Need advice about which tool to choose?Ask the StackShare community!
InfluxDB vs Microsoft SQL Server: What are the differences?
Introduction
InfluxDB and Microsoft SQL Server are two popular databases used in different scenarios. They have some key differences that set them apart. Let's explore these differences:
Data Model: InfluxDB has a time series data model, which is optimized for storing and querying time-stamped data. It organizes data based on timestamps, allowing efficient storage and retrieval of time-series data. On the other hand, Microsoft SQL Server has a relational data model, which is optimized for storing structured data in tables with predefined schemas. It supports complex relationships and joins between tables.
Query Language: InfluxDB uses its own query language called InfluxQL, which is specifically designed for time series data. It provides functions and operators that are tailored for working with time-series data. In contrast, Microsoft SQL Server uses Transact-SQL (T-SQL), a standard SQL language with additional extensions and features for managing relational databases.
Scalability: InfluxDB is designed to handle high write and query loads for time-series data. It can horizontally scale by adding more nodes to a cluster, allowing it to handle large amounts of data and high concurrency. On the other hand, Microsoft SQL Server can also scale horizontally by using database sharding or replication, but it may require more complex setup and configuration compared to InfluxDB.
Data retention: InfluxDB provides built-in data retention policies that allow automatic deletion of old data based on specified criteria. This feature is particularly useful for managing time-series data, where old data becomes less relevant over time. Microsoft SQL Server does not have built-in data retention policies, so data management needs to be manually implemented.
Data integrity: Microsoft SQL Server has support for enforcing data integrity through constraints, such as primary key, unique key, and foreign key constraints. These constraints ensure the correctness and consistency of the data. InfluxDB, being a time series database, does not have built-in support for constraints like primary key or foreign key relationships.
Optimization techniques: InfluxDB provides various optimization techniques for efficient storage and query performance, such as compression and indexing on the time series data. It also supports downsampling, which allows aggregating data over time intervals to reduce storage requirements. On the other hand, Microsoft SQL Server provides advanced indexing techniques, query optimization, and caching mechanisms for efficient query performance on relational data.
In Summary, InfluxDB and Microsoft SQL Server have key differences in their data models, query languages, scalability, data retention, data integrity, and optimization techniques.
I have a project (in production) that a part of it is generating HTML from JSON object normally we use Microsoft SQL Server only as our main database. but when it comes to this part some team members suggest working with a NoSQL database as we are going to handle JSON data for both retrieval and querying. others replied that will add complexity and we will lose SQL Servers' Unit Of Work which will break the Atomic behavior, and they suggest to continue working with SQL Server since it supports working with JSON. If you have practical experience using JSON with SQL Server, kindly share your feedback.
I agree with the advice you have been given to stick with SQL Server. If you are on the latest SQL Server version you can query inside the JSON field. You should set up a test database with a JSON field and try some queries. Once you understand it and can demonstrate it, show it to the other developers that are suggesting MongoDB. Once they see it working with their own eyes they may drop their position of Mongo over SQL. I would only seriously consider MongoDB if there was no other SQL requirements. I wouldn't do both. I'd be all SQL or all Mongo.
I think the key thing to look for is what kind of queries you're expecting to do on that JSON and how stable that data is going to be. (And if you actually need to store the data as JSON; it's generally pretty inexpensive to generate a JSON object)
MongoDB gets rid of the relational aspect of data in favor of data being very fluid in structure.
So if your JSON is going to vary a lot/is unpredictable/will change over time and you need to run queries efficiently like 'records where the field x exists and its value is higher than 3', that's a great use case for MongoDB.
It's hard to solve this in a standard relational model: Indexing on a single column that has wildly different values is pretty much impossible to do efficiently; and pulling out the data in its own columns is hard because it's hard to predict how many columns you'd have or what their datatypes would be. If this sounds like your predicament, 100% go for MongoDB.
If this is always going to be more or less the same JSON and the fields are going to be predictably the same, then the fact that it's JSON doesn't particularly matter much. Your indexes are going to approach it similar to a long string.
If the queried fields are very predictable, you should probably consider storing the fields as separate columns to have better querying capabilities. Ie if you have {"x":1, "y":2}, {"x":5, "y":6}, {"x":9, "y":0} - just make a table with an x and y column and generate the JSON. The CPU hit is worth it compared to the querying capabilities.
I have a lot of data that's currently sitting in a MariaDB database, a lot of tables that weigh 200gb with indexes. Most of the large tables have a date column which is always filtered, but there are usually 4-6 additional columns that are filtered and used for statistics. I'm trying to figure out the best tool for storing and analyzing large amounts of data. Preferably self-hosted or a cheap solution. The current problem I'm running into is speed. Even with pretty good indexes, if I'm trying to load a large dataset, it's pretty slow.
Druid Could be an amazing solution for your use case, My understanding, and the assumption is you are looking to export your data from MariaDB for Analytical workload. It can be used for time series database as well as a data warehouse and can be scaled horizontally once your data increases. It's pretty easy to set up on any environment (Cloud, Kubernetes, or Self-hosted nix system). Some important features which make it a perfect solution for your use case. 1. It can do streaming ingestion (Kafka, Kinesis) as well as batch ingestion (Files from Local & Cloud Storage or Databases like MySQL, Postgres). In your case MariaDB (which has the same drivers to MySQL) 2. Columnar Database, So you can query just the fields which are required, and that runs your query faster automatically. 3. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. 4. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures 5. Gives ana amazing centralized UI to manage data sources, query, tasks.
We are building an IOT service with heavy write throughput and fewer reads (we need downsampling records). We prefer to have good reliability when comes to data and prefer to have data retention based on policies.
So, we are looking for what is the best underlying DB for ingesting a lot of data and do queries easily
We had a similar challenge. We started with DynamoDB, Timescale, and even InfluxDB and Mongo - to eventually settle with PostgreSQL. Assuming the inbound data pipeline in queued (for example, Kinesis/Kafka -> S3 -> and some Lambda functions), PostgreSQL gave us a We had a similar challenge. We started with DynamoDB, Timescale and even InfluxDB and Mongo - to eventually settle with PostgreSQL. Assuming the inbound data pipeline in queued (for example, Kinesis/Kafka -> S3 -> and some Lambda functions), PostgreSQL gave us better performance by far.
Druid is amazing for this use case and is a cloud-native solution that can be deployed on any cloud infrastructure or on Kubernetes. - Easy to scale horizontally - Column Oriented Database - SQL to query data - Streaming and Batch Ingestion - Native search indexes It has feature to work as TimeSeriesDB, Datawarehouse, and has Time-optimized partitioning.
if you want to find a serverless solution with capability of a lot of storage and SQL kind of capability then google bigquery is the best solution for that.
I am a Microsoft SQL Server programmer who is a bit out of practice. I have been asked to assist on a new project. The overall purpose is to organize a large number of recordings so that they can be searched. I have an enormous music library but my songs are several hours long. I need to include things like time, date and location of the recording. I don't have a problem with the general database design. I have two primary questions:
- I need to use either MySQL or PostgreSQL on a Linux based OS. Which would be better for this application?
- I have not dealt with a sound based data type before. How do I store that and put it in a table? Thank you.
Hi Erin,
Honestly both databases will do the job just fine. I personally prefer Postgres.
Much more important is how you store the audio. While you could technically use a blob type column, it's really not ideal to be storing audio files which are "several hours long" in a database row. Instead consider storing the audio files in an object store (hosted options include backblaze b2 or aws s3) and persisting the key (which references that object) in your database column.
Hi Erin, Chances are you would want to store the files in a blob type. Both MySQL and Postgres support this. Can you explain a little more about your need to store the files in the database? I may be more effective to store the files on a file system or something like S3. To answer your qustion based on what you are descibing I would slighly lean towards PostgreSQL since it tends to be a little better on the data warehousing side.
Hey Erin! I would recommend checking out Directus before you start work on building your own app for them. I just stumbled upon it, and so far extremely happy with the functionalities. If your client is just looking for a simple web app for their own data, then Directus may be a great option. It offers "database mirroring", so that you can connect it to any database and set up functionality around it!
Hi Erin! First of all, you'd probably want to go with a managed service. Don't spin up your own MySQL installation on your own Linux box. If you are on AWS, thet have different offerings for database services. Standard RDS vs. Aurora. Aurora would be my preferred choice given the benefits it offers, storage optimizations it comes with... etc. Such managed services easily allow you to apply new security patches and upgrades, set up backups, replication... etc. Doing this on your own would either be risky, inefficient, or you might just give up. As far as which database to chose, you'll have the choice between Postgresql, MySQL, Maria DB, SQL Server... etc. I personally would recommend MySQL (latest version available), as the official tooling for it (MySQL Workbench) is great, stable, and moreover free. Other database services exist, I'd recommend you also explore Dynamo DB.
Regardless, you'd certainly only keep high-level records, meta data in Database, and the actual files, most-likely in S3, so that you can keep all options open in terms of what you'll do with them.
Hi Erin,
- Coming from "Big" DB engines, such as Oracle or MSSQL, go for PostgreSQL. You'll get all the features you need with PostgreSQL.
- Your case seems to point to a "NoSQL" or Document Database use case. Since you get covered on this with PostgreSQL which achieves excellent performances on JSON based objects, this is a second reason to choose PostgreSQL. MongoDB might be an excellent option as well if you need "sharding" and excellent map-reduce mechanisms for very massive data sets. You really should investigate the NoSQL option for your use case.
- Starting with AWS Aurora is an excellent advise. since "vendor lock-in" is limited, but I did not check for JSON based object / NoSQL features.
- If you stick to Linux server, the PostgreSQL or MySQL provided with your distribution are straightforward to install (i.e. apt install postgresql). For PostgreSQL, make sure you're comfortable with the pg_hba.conf, especially for IP restrictions & accesses.
Regards,
I recommend Postgres as well. Superior performance overall and a more robust architecture.
Easy to start, lightweight and open source.
When I started with PHP, MySQL was everywhere so this is how I started with it. I am no expert in databases but I started learning joins, stored procedures, triggers, etc. with MySQL.
Recently used it in one of my projects - Picfam.com with Node.js + Express backend
Needed to transform intranet desktop application to the web-based one, as mid-term project. My choice was to use Django/Angular stack - Django since it, in conjunction with Python, enabled rapid development, an Angular since it was stable and enterprise-level framework. Deadlines were somewhat tight since the project to migrate was being developed for several years and had a lot of domain knowledge integrated into it. Definitely was good decision, since deadlines was manageable, juniors were able to enter the project very quickly and we were able to continuously deploy very well.
I chose TimescaleDB because to be the backend system of our production monitoring system. We needed to be able to keep track of multiple high cardinality dimensions.
The drawbacks of this decision are our monitoring system is a bit more ad hoc than it used to (New Relic Insights)
We are combining this with Grafana for display and Telegraf for data collection
Pros of InfluxDB
- Time-series data analysis59
- Easy setup, no dependencies30
- Fast, scalable & open source24
- Open source21
- Real-time analytics20
- Continuous Query support6
- Easy Query Language5
- HTTP API4
- Out-of-the-box, automatic Retention Policy4
- Offers Enterprise version1
- Free Open Source version1
Pros of Microsoft SQL Server
- Reliable and easy to use139
- High performance101
- Great with .net95
- Works well with .net65
- Easy to maintain56
- Azure support21
- Always on17
- Full Index Support17
- Enterprise manager is fantastic10
- In-Memory OLTP Engine9
- Easy to setup and configure2
- Security is forefront2
- Great documentation1
- Faster Than Oracle1
- Columnstore indexes1
- Decent management tools1
- Docker Delivery1
- Max numar of connection is 140001
Sign up to add or upvote prosMake informed product decisions
Cons of InfluxDB
- Instability4
- Proprietary query language1
- HA or Clustering is only in paid version1
Cons of Microsoft SQL Server
- Expensive Licensing4
- Microsoft2
- Data pages is only 8k1
- Allwayon can loose data in asycronious mode1
- Replication can loose the data1
- The maximum number of connections is only 14000 connect1