What is Kibana and what are its top alternatives?
Top Alternatives to Kibana
- Datadog
Datadog is the leading service for cloud-scale monitoring. It is used by IT, operations, and development teams who build and operate applications that run on dynamic or hybrid cloud infrastructure. Start monitoring in minutes with Datadog! ...
- Grafana
Grafana is a general purpose dashboard and graph composer. It's focused on providing rich ways to visualize time series metrics, mainly though graphs but supports other ways to visualize data through a pluggable panel architecture. It currently has rich support for for Graphite, InfluxDB and OpenTSDB. But supports other data sources via plugins. ...
- Loggly
It is a SaaS solution to manage your log data. There is nothing to install and updates are automatically applied to your Loggly subdomain. ...
- Graylog
Centralize and aggregate all your log files for 100% visibility. Use our powerful query language to search through terabytes of log data to discover and analyze important information. ...
- Splunk
It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data. ...
- Prometheus
Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true. ...
- Tableau
Tableau can help anyone see and understand their data. Connect to almost any database, drag and drop to create visualizations, and share with a click. ...
- New Relic
The world’s best software and DevOps teams rely on New Relic to move faster, make better decisions and create best-in-class digital experiences. If you run software, you need to run New Relic. More than 50% of the Fortune 100 do too. ...
Kibana alternatives & related posts
Datadog
- Monitoring for many apps (databases, web servers, etc)139
- Easy setup107
- Powerful ui87
- Powerful integrations84
- Great value70
- Great visualization54
- Events + metrics = clarity46
- Notifications41
- Custom metrics41
- Flexibility39
- Free & paid plans19
- Great customer support16
- Makes my life easier15
- Adapts automatically as i scale up10
- Easy setup and plugins9
- Super easy and powerful8
- AWS support7
- In-context collaboration7
- Rich in features6
- Docker support5
- Cost4
- Full visibility of applications4
- Monitor almost everything4
- Cute logo4
- Automation tools4
- Source control and bug tracking4
- Simple, powerful, great for infra4
- Easy to Analyze4
- Best than others4
- Best in the field3
- Expensive3
- Good for Startups3
- Free setup3
- APM2
- Expensive20
- No errors exception tracking4
- External Network Goes Down You Wont Be Logging2
- Complicated1
related Datadog posts
Our primary source of monitoring and alerting is Datadog. We’ve got prebuilt dashboards for every scenario and integration with PagerDuty to manage routing any alerts. We’ve definitely scaled past the point where managing dashboards is easy, but we haven’t had time to invest in using features like Anomaly Detection. We’ve started using Honeycomb for some targeted debugging of complex production issues and we are liking what we’ve seen. We capture any unhandled exceptions with Rollbar and, if we realize one will keep happening, we quickly convert the metrics to point back to Datadog, to keep Rollbar as clean as possible.
We use Segment to consolidate all of our trackers, the most important of which goes to Amplitude to analyze user patterns. However, if we need a more consolidated view, we push all of our data to our own data warehouse running PostgreSQL; this is available for analytics and dashboard creation through Looker.
Hey there! We are looking at Datadog, Dynatrace, AppDynamics, and New Relic as options for our web application monitoring.
Current Environment: .NET Core Web app hosted on Microsoft IIS
Future Environment: Web app will be hosted on Microsoft Azure
Tech Stacks: IIS, RabbitMQ, Redis, Microsoft SQL Server
Requirement: Infra Monitoring, APM, Real - User Monitoring (User activity monitoring i.e., time spent on a page, most active page, etc.), Service Tracing, Root Cause Analysis, and Centralized Log Management.
Please advise on the above. Thanks!
- Beautiful89
- Graphs are interactive68
- Free57
- Easy56
- Nicer than the Graphite web interface34
- Many integrations26
- Can build dashboards18
- Easy to specify time window10
- Can collaborate on dashboards10
- Dashboards contain number tiles9
- Open Source5
- Integration with InfluxDB5
- Click and drag to zoom in5
- Authentification and users management4
- Threshold limits in graphs4
- Alerts3
- It is open to cloud watch and many database3
- Simple and native support to Prometheus3
- Great community support2
- You can use this for development to check memcache2
- You can visualize real time data to put alerts2
- Grapsh as code0
- Plugin visualizationa0
- No interactive query builder1
related Grafana posts
Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.
Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:
By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.
To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...
(GitHub : https://github.com/m3db/m3)
- Centralized log management37
- Easy to setup25
- Great filtering21
- Live logging16
- Json log support15
- Log Management10
- Alerting10
- Great Dashboards7
- Love the product7
- Heroku Add-on4
- Easy to setup and use2
- Easy setup2
- No alerts in free plan2
- Great UI2
- Good parsing2
- Powerful2
- Fast search2
- Backup to S32
- Pricey after free plan3
related Loggly posts
- Open source19
- Powerfull13
- Well documented8
- Alerts6
- User authentification5
- Flexibel query and parsing language5
- Alerts and dashboards3
- User management3
- Easy query language and english parsing3
- Easy to install2
- Manage users and permissions1
- A large community1
- Free Version1
- Does not handle frozen indices at all1
related Graylog posts
- API for searching logs, running reports3
- Alert system based on custom query results3
- Splunk language supports string, date manip, math, etc2
- Dashboarding on any log contents2
- Custom log parsing as well as automatic parsing2
- Query engine supports joining, aggregation, stats, etc2
- Rich GUI for searching live logs2
- Ability to style search results into reports2
- Granular scheduling and time window support1
- Query any log as key-value pairs1
- Splunk query language rich so lots to learn1
related Splunk posts
I use Kibana because it ships with the ELK stack. I don't find it as powerful as Splunk however it is light years above grepping through log files. We previously used Grafana but found it to be annoying to maintain a separate tool outside of the ELK stack. We were able to get everything we needed from Kibana.
We are currently exploring Elasticsearch and Splunk for our centralized logging solution. I need some feedback about these two tools. We expect our logs in the range of upwards > of 10TB of logging data.
Prometheus
- Powerful easy to use monitoring47
- Flexible query language38
- Dimensional data model32
- Alerts27
- Active and responsive community23
- Extensive integrations22
- Easy to setup19
- Beautiful Model and Query language12
- Easy to extend7
- Nice6
- Written in Go3
- Good for experimentation2
- Easy for monitoring1
- Just for metrics12
- Bad UI6
- Needs monitoring to access metrics endpoints6
- Not easy to configure and use4
- Supports only active agents3
- Written in Go2
- TLS is quite difficult to understand2
- Requires multiple applications and tools2
- Single point of failure1
related Prometheus posts
Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.
Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:
By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.
To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...
(GitHub : https://github.com/m3db/m3)
- Capable of visualising billions of rows6
- Intuitive and easy to learn1
- Responsive1
- Very expensive for small companies3
related Tableau posts
Looking for the best analytics software for a medium-large-sized firm. We currently use a Microsoft SQL Server database that is analyzed in Tableau desktop/published to Tableau online for users to access dashboards. Is it worth the cost savings/time to switch over to using SSRS or Power BI? Does anyone have experience migrating from Tableau to SSRS /or Power BI? Our other option is to consider using Tableau on-premises instead of online. Using custom SQL with over 3 million rows really decreases performances and results in processing times that greatly exceed our typical experience. Thanks.
Hello everyone,
My team and I are currently in the process of selecting a Business Intelligence (BI) tool for our actively developing company, which has over 500 employees. We are considering open-source options.
We are keen to connect with a Head of Analytics or BI Analytics professional who has extensive experience working with any of these systems and is willing to share their insights. Ideally, we would like to speak with someone from companies that have transitioned from proprietary BI tools (such as PowerBI, Qlik, or Tableau) to open-source BI tools, or vice versa.
If you have any contacts or recommendations for individuals we could reach out to regarding this matter, we would greatly appreciate it. Additionally, if you are personally willing to share your experiences, please feel free to reach out to me directly. Thank you!
New Relic
- Easy setup415
- Really powerful344
- Awesome visualization245
- Ease of use194
- Great ui151
- Free tier106
- Great tool for insights80
- Heroku Integration66
- Market leader55
- Peace of mind49
- Push notifications21
- Email notifications20
- Heroku Add-on17
- Error Detection and Alerting16
- Multiple language support13
- SQL Analysis11
- Server Resources Monitoring11
- Transaction Tracing9
- Apdex Scores8
- Azure Add-on8
- Analysis of CPU, Disk, Memory, and Network7
- Detailed reports7
- Performance of External Services6
- Error Analysis6
- Application Availability Monitoring and Alerting6
- Application Response Times6
- Most Time Consuming Transactions5
- JVM Performance Analyzer (Java)5
- Browser Transaction Tracing4
- Top Database Operations4
- Easy to use4
- Application Map3
- Weekly Performance Email3
- Pagoda Box integration3
- Custom Dashboards3
- Easy to setup2
- Background Jobs Transaction Analysis2
- App Speed Index2
- Super Expensive1
- Team Collaboration Tools1
- Metric Data Retention1
- Metric Data Resolution1
- Worst Transactions by User Dissatisfaction1
- Real User Monitoring Overview1
- Real User Monitoring Analysis and Breakdown1
- Time Comparisons1
- Access to Performance Data API1
- Incident Detection and Alerting1
- Best of the best, what more can you ask for1
- Best monitoring on the market1
- Rails integration1
- Free1
- Proce0
- Price0
- Exceptions0
- Cost0
- Pricing model doesn't suit microservices20
- UI isn't great10
- Expensive7
- Visualizations aren't very helpful7
- Hard to understand why things in your app are breaking5
related New Relic posts
Hey there! We are looking at Datadog, Dynatrace, AppDynamics, and New Relic as options for our web application monitoring.
Current Environment: .NET Core Web app hosted on Microsoft IIS
Future Environment: Web app will be hosted on Microsoft Azure
Tech Stacks: IIS, RabbitMQ, Redis, Microsoft SQL Server
Requirement: Infra Monitoring, APM, Real - User Monitoring (User activity monitoring i.e., time spent on a page, most active page, etc.), Service Tracing, Root Cause Analysis, and Centralized Log Management.
Please advise on the above. Thanks!
I need to choose a monitoring tool for my project, but currently, my application doesn't have much load or many users. My application is not generating GBs of data. We don't want to send the user information to New Relic because it's a 3rd party tool. And we can deploy Kibana locally on our server. What should I use, Kibana or New Relic?