What is Splunk and what are its top alternatives?
Top Alternatives to Splunk
- Datadog
Datadog is the leading service for cloud-scale monitoring. It is used by IT, operations, and development teams who build and operate applications that run on dynamic or hybrid cloud infrastructure. Start monitoring in minutes with Datadog! ...
- Graylog
Centralize and aggregate all your log files for 100% visibility. Use our powerful query language to search through terabytes of log data to discover and analyze important information. ...
- Elasticsearch
Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack). ...
- Sumo Logic
Cloud-based machine data analytics platform that enables companies to proactively identify availability and performance issues in their infrastructure, improve their security posture and enhance application rollouts. Companies using Sumo Logic reduce their mean-time-to-resolution by 50% and can save hundreds of thousands of dollars, annually. Customers include Netflix, Medallia, Orange, and GoGo Inflight. ...
- Kibana
Kibana is an open source (Apache Licensed), browser based analytics and search dashboard for Elasticsearch. Kibana is a snap to setup and start using. Kibana strives to be easy to get started with, while also being flexible and powerful, just like Elasticsearch. ...
- Tableau
Tableau can help anyone see and understand their data. Connect to almost any database, drag and drop to create visualizations, and share with a click. ...
- AppDynamics
AppDynamics develops application performance management (APM) solutions that deliver problem resolution for highly distributed applications through transaction flow monitoring and deep diagnostics. ...
- New Relic
The world’s best software and DevOps teams rely on New Relic to move faster, make better decisions and create best-in-class digital experiences. If you run software, you need to run New Relic. More than 50% of the Fortune 100 do too. ...
Splunk alternatives & related posts
Datadog
- Monitoring for many apps (databases, web servers, etc)134
- Easy setup106
- Powerful ui86
- Powerful integrations82
- Great value69
- Great visualization53
- Events + metrics = clarity45
- Custom metrics40
- Notifications40
- Flexibility38
- Free & paid plans18
- Great customer support15
- Makes my life easier14
- Adapts automatically as i scale up9
- Easy setup and plugins8
- Super easy and powerful7
- In-context collaboration6
- AWS support6
- Rich in features5
- Docker support4
- Cost4
- Easy to Analyze3
- Full visibility of applications3
- Automation tools3
- Monitor almost everything3
- Cute logo3
- Simple, powerful, great for infra3
- Source control and bug tracking3
- Best than others3
- Expensive3
- Best in the field2
- Good for Startups2
- Free setup2
- Expensive17
- No errors exception tracking4
- External Network Goes Down You Wont Be Logging2
- Complicated1
related Datadog posts
Our primary source of monitoring and alerting is Datadog. We’ve got prebuilt dashboards for every scenario and integration with PagerDuty to manage routing any alerts. We’ve definitely scaled past the point where managing dashboards is easy, but we haven’t had time to invest in using features like Anomaly Detection. We’ve started using Honeycomb for some targeted debugging of complex production issues and we are liking what we’ve seen. We capture any unhandled exceptions with Rollbar and, if we realize one will keep happening, we quickly convert the metrics to point back to Datadog, to keep Rollbar as clean as possible.
We use Segment to consolidate all of our trackers, the most important of which goes to Amplitude to analyze user patterns. However, if we need a more consolidated view, we push all of our data to our own data warehouse running PostgreSQL; this is available for analytics and dashboard creation through Looker.









We are looking for a centralised monitoring solution for our application deployed on Amazon EKS. We would like to monitor using metrics from Kubernetes, AWS services (NeptuneDB, AWS Elastic Load Balancing (ELB), Amazon EBS, Amazon S3, etc) and application microservice's custom metrics.
We are expected to use around 80 microservices (not replicas). I think a total of 200-250 microservices will be there in the system with 10-12 slave nodes.
We tried Prometheus but it looks like maintenance is a big issue. We need to manage scaling, maintaining the storage, and dealing with multiple exporters and Grafana. I felt this itself needs few dedicated resources (at least 2-3 people) to manage. Not sure if I am thinking in the correct direction. Please confirm.
You mentioned Datadog and Sysdig charges per host. Does it charge per slave node?
- Open source17
- Powerfull12
- Well documented7
- Flexibel query and parsing language5
- User authentification5
- Alerts5
- Easy query language and english parsing2
- Alerts and dashboards2
- User management2
- Easy to install1
- Honestly the worst tool I ever used1
- A large community1
- Manage users and permissions1
- Does not handle frozen indices at all1
related Graylog posts
- Powerful api322
- Great search engine313
- Open source230
- Restful214
- Near real-time search199
- Free96
- Search everything83
- Easy to get started54
- Analytics45
- Distributed26
- Fast search6
- More than a search engine5
- Easy to scale3
- Awesome, great tool3
- Great docs3
- Potato2
- Document Store2
- Great customer support2
- Intuitive API2
- Reliable2
- Nosql DB2
- Fast2
- Easy setup2
- Highly Available2
- Great piece of software2
- Ecosystem1
- Scalability1
- Not stable1
- Github1
- Elaticsearch1
- Actively developing1
- Responsive maintainers on GitHub1
- Easy to get hot data1
- Open1
- Community0
- Resource hungry7
- Diffecult to get started6
- Expensive5
- Hard to keep stable at large scale4
related Elasticsearch posts
We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.
We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).
And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.
I can't recommend it highly enough.
















Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
- Search capabilities11
- Live event streaming5
- Pci 3.0 compliant3
- Easy to setup2
- Expensive2
- Missing Monitoring1
- Occasionally unreliable log ingestion0
related Sumo Logic posts
Logentries, LogDNA, Timber.io, Papertrail and Sumo Logic provide free pricing plan for #Heroku application. You can add these applications as add-ons very easily.
- Easy to setup88
- Free62
- Can search text45
- Has pie chart21
- X-axis is not restricted to timestamp13
- Easy queries and is a good way to view logs8
- Supports Plugins6
- Dev Tools3
- More "user-friendly"3
- Can build dashboards3
- Easy to drill-down2
- Out-of-Box Dashboards/Analytics for Metrics/Heartbeat2
- Up and running1
- Unintuituve5
- Elasticsearch is huge3
- Works on top of elastic only3
- Hardweight UI2
related Kibana posts
















Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
Elasticsearch's built-in visualization tool, Kibana, is robust and the appropriate tool in many cases. However, it is geared specifically towards log exploration and time-series data, and we felt that its steep learning curve would impede adoption rate among data scientists accustomed to writing SQL. The solution was to create something that would replicate some of Kibana's essential functionality while hiding Elasticsearch's complexity behind SQL-esque labels and terminology ("table" instead of "index", "group by" instead of "sub-aggregation") in the UI.
Elasticsearch's API is really well-suited for aggregating time-series data, indexing arbitrary data without defining a schema, and creating dashboards. For the purpose of a data exploration backend, Elasticsearch fits the bill really well. Users can send an HTTP request with aggregations and sub-aggregations to an index with millions of documents and get a response within seconds, thus allowing them to rapidly iterate through their data.
- Capable of visualising billions of rows4
- Intuitive and easy to learn1
- Responsive1
- Very expensive for small companies1
related Tableau posts
Looking for the best analytics software for a medium-large-sized firm. We currently use a Microsoft SQL Server database that is analyzed in Tableau desktop/published to Tableau online for users to access dashboards. Is it worth the cost savings/time to switch over to using SSRS or Power BI? Does anyone have experience migrating from Tableau to SSRS /or Power BI? Our other option is to consider using Tableau on-premises instead of online. Using custom SQL with over 3 million rows really decreases performances and results in processing times that greatly exceed our typical experience. Thanks.
- Deep code visibility18
- Powerful11
- Great visualization7
- Real-Time Visibility7
- Easy Setup6
- Comprehensive Coverage of Programming Languages5
- Deep DB Troubleshooting3
- Excellent Customer Support2
- Expensive5
- Poor to non-existent integration with aws services2
related AppDynamics posts









Hey there! We are looking at Datadog, Dynatrace, AppDynamics, and New Relic as options for our web application monitoring.
Current Environment: .NET Core Web app hosted on Microsoft IIS
Future Environment: Web app will be hosted on Microsoft Azure
Tech Stacks: IIS, RabbitMQ, Redis, Microsoft SQL Server
Requirement: Infra Monitoring, APM, Real - User Monitoring (User activity monitoring i.e., time spent on a page, most active page, etc.), Service Tracing, Root Cause Analysis, and Centralized Log Management.
Please advise on the above. Thanks!
Hi Folks,
I am trying to evaluate Site24x7 against AppDynamics, Dynatrace, and New Relic. Has anyone used Site24X7? If so, what are your opinions on the tool? I know that the license costs are very low compared to other tools in the market. Other than that, are there any major issues anyone has encountered using the tool itself?
New Relic
- Easy setup415
- Really powerful344
- Awesome visualization244
- Ease of use194
- Great ui151
- Free tier107
- Great tool for insights81
- Heroku Integration66
- Market leader55
- Peace of mind49
- Push notifications21
- Email notifications20
- Heroku Add-on17
- Error Detection and Alerting16
- Multiple language support12
- Server Resources Monitoring11
- SQL Analysis11
- Transaction Tracing9
- Apdex Scores8
- Azure Add-on8
- Analysis of CPU, Disk, Memory, and Network7
- Detailed reports6
- Performance of External Services6
- Error Analysis6
- Application Availability Monitoring and Alerting6
- Application Response Times6
- JVM Performance Analyzer (Java)5
- Most Time Consuming Transactions5
- Easy to use4
- Top Database Operations4
- Browser Transaction Tracing4
- Application Map3
- Pagoda Box integration3
- Custom Dashboards3
- Weekly Performance Email3
- Easy visibility2
- App Speed Index2
- Easy to setup2
- Background Jobs Transaction Analysis2
- Incident Detection and Alerting1
- Worst Transactions by User Dissatisfaction1
- Metric Data Resolution1
- Metric Data Retention1
- Team Collaboration Tools1
- Rails integration1
- Super Expensive1
- Access to Performance Data API1
- Real User Monitoring Overview1
- Real User Monitoring Analysis and Breakdown1
- Free1
- Best of the best, what more can you ask for1
- Best monitoring on the market1
- Time Comparisons1
- Exceptions0
- Ddd0
- Pricing model doesn't suit microservices19
- UI isn't great10
- Visualizations aren't very helpful7
- Expensive7
- Hard to understand why things in your app are breaking5
related New Relic posts









Hey there! We are looking at Datadog, Dynatrace, AppDynamics, and New Relic as options for our web application monitoring.
Current Environment: .NET Core Web app hosted on Microsoft IIS
Future Environment: Web app will be hosted on Microsoft Azure
Tech Stacks: IIS, RabbitMQ, Redis, Microsoft SQL Server
Requirement: Infra Monitoring, APM, Real - User Monitoring (User activity monitoring i.e., time spent on a page, most active page, etc.), Service Tracing, Root Cause Analysis, and Centralized Log Management.
Please advise on the above. Thanks!
Regarding Continuous Integration - we've started with something very easy to set up - CircleCI , but with time we're adding more & more complex pipelines - we use Jenkins to configure & run those. It's much more effort, but at some point we had to pay for the flexibility we expected. Our source code version control is Git (which probably doesn't require a rationale these days) and we keep repos in GitHub - since the very beginning & we never considered moving out. Our primary monitoring these days is in New Relic (Ruby & SPA apps) and AppSignal (Elixir apps) - we're considering unifying it in New Relic , but this will require some improvements in Elixir app observability. For error reporting we use Sentry (a very popular choice in this class) & we collect our distributed logs using Logentries (to avoid semi-manual handling here).