Druid vs Elasticsearch

Need advice about which tool to choose?Ask the StackShare community!

Druid

320
704
+ 1
29
Elasticsearch

26.6K
20.4K
+ 1
1.6K
Add tool

Druid vs Elasticsearch: What are the differences?

What is Druid? Fast column-oriented distributed data store. Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

What is Elasticsearch? Open Source, Distributed, RESTful Search Engine. Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

Druid can be classified as a tool in the "Big Data Tools" category, while Elasticsearch is grouped under "Search as a Service".

"Real Time Aggregations" is the primary reason why developers consider Druid over the competitors, whereas "Powerful api" was stated as the key factor in picking Elasticsearch.

Druid and Elasticsearch are both open source tools. It seems that Elasticsearch with 42.4K GitHub stars and 14.2K forks on GitHub has more adoption than Druid with 8.32K GitHub stars and 2.08K GitHub forks.

According to the StackShare community, Elasticsearch has a broader approval, being mentioned in 2003 company stacks & 979 developers stacks; compared to Druid, which is listed in 24 company stacks and 12 developer stacks.

Advice on Druid and Elasticsearch
Rana Usman Shahid
Chief Technology Officer at TechAvanza · | 5 upvotes · 182.3K views
Needs advice
on
FirebaseFirebaseElasticsearchElasticsearch
and
AlgoliaAlgolia

Hey everybody! (1) I am developing an android application. I have data of around 3 million record (less than a TB). I want to save that data in the cloud. Which company provides the best cloud database services that would suit my scenario? It should be secured, long term useable, and provide better services. I decided to use Firebase Realtime database. Should I stick with Firebase or are there any other companies that provide a better service?

(2) I have the functionality of searching data in my app. Same data (less than a TB). Which search solution should I use in this case? I found Elasticsearch and Algolia search. It should be secure and fast. If any other company provides better services than these, please feel free to suggest them.

Thank you!

See more
Replies (2)
Josh Dzielak
Co-Founder & CTO at Orbit · | 7 upvotes · 138.4K views
Recommends
AlgoliaAlgolia

Hi Rana, good question! From my Firebase experience, 3 million records is not too big at all, as long as the cost is within reason for you. With Firebase you will be able to access the data from anywhere, including an android app, and implement fine-grained security with JSON rules. The real-time-ness works perfectly. As a fully managed database, Firebase really takes care of everything. The only thing to watch out for is if you need complex query patterns - Firestore (also in the Firebase family) can be a better fit there.

To answer question 2: the right answer will depend on what's most important to you. Algolia is like Firebase is that it is fully-managed, very easy to set up, and has great SDKs for Android. Algolia is really a full-stack search solution in this case, and it is easy to connect with your Firebase data. Bear in mind that Algolia does cost money, so you'll want to make sure the cost is okay for you, but you will save a lot of engineering time and never have to worry about scale. The search-as-you-type performance with Algolia is flawless, as that is a primary aspect of its design. Elasticsearch can store tons of data and has all the flexibility, is hosted for cheap by many cloud services, and has many users. If you haven't done a lot with search before, the learning curve is higher than Algolia for getting the results ranked properly, and there is another learning curve if you want to do the DevOps part yourself. Both are very good platforms for search, Algolia shines when buliding your app is the most important and you don't want to spend many engineering hours, Elasticsearch shines when you have a lot of data and don't mind learning how to run and optimize it.

See more
Mike Endale
Recommends
Cloud FirestoreCloud Firestore

Rana - we use Cloud Firestore at our startup. It handles many million records without any issues. It provides you the same set of features that the Firebase Realtime Database provides on top of the indexing and security trims. The only thing to watch out for is to make sure your Cloud Functions have proper exception handling and there are no infinite loop in the code. This will be too costly if not caught quickly.

For search; Algolia is a great option, but cost is a real consideration. Indexing large number of records can be cost prohibitive for most projects. Elasticsearch is a solid alternative, but requires a little additional work to configure and maintain if you want to self-host.

Hope this helps.

See more
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Druid
Pros of Elasticsearch
  • 14
    Real Time Aggregations
  • 5
    Batch and Real-Time Ingestion
  • 4
    OLAP
  • 3
    OLAP + OLTP
  • 2
    Combining stream and historical analytics
  • 1
    OLTP
  • 321
    Powerful api
  • 311
    Great search engine
  • 230
    Open source
  • 213
    Restful
  • 199
    Near real-time search
  • 96
    Free
  • 83
    Search everything
  • 54
    Easy to get started
  • 45
    Analytics
  • 26
    Distributed
  • 6
    Fast search
  • 5
    More than a search engine
  • 3
    Great docs
  • 3
    Easy to scale
  • 3
    Awesome, great tool
  • 2
    Document Store
  • 2
    Nosql DB
  • 2
    Great piece of software
  • 2
    Potato
  • 2
    Great customer support
  • 2
    Intuitive API
  • 2
    Fast
  • 2
    Easy setup
  • 2
    Highly Available
  • 1
    Open
  • 1
    Scalability
  • 1
    Easy to get hot data
  • 1
    Github
  • 1
    Elaticsearch
  • 1
    Actively developing
  • 1
    Responsive maintainers on GitHub
  • 1
    Ecosystem
  • 1
    Not stable
  • 1
    Reliable
  • 0
    Community

Sign up to add or upvote prosMake informed product decisions

Cons of Druid
Cons of Elasticsearch
  • 3
    Limited sql support
  • 2
    Joins are not supported well
  • 1
    Complexity
  • 6
    Resource hungry
  • 6
    Diffecult to get started
  • 5
    Expensive
  • 4
    Hard to keep stable at large scale

Sign up to add or upvote consMake informed product decisions

What is Druid?

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

What is Elasticsearch?

Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

Need advice about which tool to choose?Ask the StackShare community!

What companies use Druid?
What companies use Elasticsearch?
See which teams inside your own company are using Druid or Elasticsearch.
Sign up for Private StackShareLearn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Druid?
What tools integrate with Elasticsearch?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

Dec 22 2021 at 5:41AM

Pinterest

MySQLKafkaDruid+3
3
235
MySQLKafkaApache Spark+6
2
1640
May 21 2019 at 12:20AM

Elastic

ElasticsearchKibanaLogstash+4
12
3484
What are some alternatives to Druid and Elasticsearch?
HBase
Apache HBase is an open-source, distributed, versioned, column-oriented store modeled after Google' Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, HBase provides Bigtable-like capabilities on top of Apache Hadoop.
MongoDB
MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.
Cassandra
Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.
Prometheus
Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true.
Clickhouse
It allows analysis of data that is updated in real time. It offers instant results in most cases: the data is processed faster than it takes to create a query.
See all alternatives