Datadog vs Kibana vs New Relic

Need advice about which tool to choose?Ask the StackShare community!

Datadog

9.6K
8.2K
+ 1
861
Kibana

20.7K
16.4K
+ 1
262
New Relic

21K
8.7K
+ 1
1.9K

Datadog vs Kibana vs New Relic: What are the differences?

Datadog and Kibana are popular monitoring and analytics platforms, whereas New Relic is a performance monitoring tool. Each of these tools offers unique features and capabilities to help businesses monitor and optimize their applications. Below are key differences between Datadog, Kibana, and New Relic.

1. **Functionality**: Datadog is known for its extensive monitoring capabilities, including infrastructure monitoring, application performance monitoring, log management, and more. Kibana, on the other hand, is more focused on data visualization and analysis, particularly for Elasticsearch data. New Relic specializes in application performance monitoring, providing real-time insights into the health and performance of software applications.

2. **Integration**: Datadog offers a wide range of integrations with various third-party tools and services, making it easy to collect and analyze data from different sources. Kibana is typically used in conjunction with Elasticsearch, providing powerful search and visualization capabilities for Elasticsearch data. New Relic also offers integrations with popular development and monitoring tools to streamline the monitoring and optimization process.

3. **User Interface**: Datadog features a user-friendly and intuitive dashboard that allows users to monitor their infrastructure, applications, and logs with ease. Kibana's strength lies in its visualization tools, offering a customizable interface for exploring and analyzing data stored in Elasticsearch. New Relic provides a clean and organized user interface that gives users a comprehensive view of the performance of their applications.

4. **Alerting**: Datadog offers robust alerting capabilities, allowing users to set up custom alerts based on predefined conditions to proactively monitor their systems. Kibana's alerting features are more limited compared to Datadog, focusing primarily on alerting based on specific data thresholds. New Relic provides flexible alerting options to notify users of any deviations from the expected performance metrics.

5. **Scalability**: Datadog is highly scalable and can handle large volumes of data, making it suitable for organizations of all sizes. Kibana's scalability depends on the underlying Elasticsearch cluster, with larger clusters required for handling increased data volume. New Relic offers scalable monitoring solutions that can adapt to the growth and changing needs of businesses.

6. **Cost**: Datadog's pricing is based on the volume of data ingested and the features included, making it a customizable option for businesses with varying monitoring needs. Kibana is open-source and free to use, but additional functionalities may require a subscription to Elasticsearch. New Relic's pricing is based on the number of monitored hosts or user licenses, offering different tiers to accommodate different business sizes.

In Summary, Datadog, Kibana, and New Relic each offer unique functionalities and strengths in monitoring and analytics, catering to different business requirements and preferences.

Advice on Datadog, Kibana, and New Relic
Farzeem Diamond Jiwani
Software Engineer at IVP · | 8 upvotes · 1.6M views
Needs advice
on
AppDynamicsAppDynamicsDatadogDatadog
and
DynatraceDynatrace

Hey there! We are looking at Datadog, Dynatrace, AppDynamics, and New Relic as options for our web application monitoring.

Current Environment: .NET Core Web app hosted on Microsoft IIS

Future Environment: Web app will be hosted on Microsoft Azure

Tech Stacks: IIS, RabbitMQ, Redis, Microsoft SQL Server

Requirement: Infra Monitoring, APM, Real - User Monitoring (User activity monitoring i.e., time spent on a page, most active page, etc.), Service Tracing, Root Cause Analysis, and Centralized Log Management.

Please advise on the above. Thanks!

See more
Needs advice
on
DatadogDatadogNew RelicNew Relic
and
SysdigSysdig

We are looking for a centralised monitoring solution for our application deployed on Amazon EKS. We would like to monitor using metrics from Kubernetes, AWS services (NeptuneDB, AWS Elastic Load Balancing (ELB), Amazon EBS, Amazon S3, etc) and application microservice's custom metrics.

We are expected to use around 80 microservices (not replicas). I think a total of 200-250 microservices will be there in the system with 10-12 slave nodes.

We tried Prometheus but it looks like maintenance is a big issue. We need to manage scaling, maintaining the storage, and dealing with multiple exporters and Grafana. I felt this itself needs few dedicated resources (at least 2-3 people) to manage. Not sure if I am thinking in the correct direction. Please confirm.

You mentioned Datadog and Sysdig charges per host. Does it charge per slave node?

See more
Replies (3)
Recommends
on
DatadogDatadog

Can't say anything to Sysdig. I clearly prefer Datadog as

  • they provide plenty of easy to "switch-on" plugins for various technologies (incl. most of AWS)
  • easy to code (python) agent plugins / api for own metrics
  • brillant dashboarding / alarms with many customization options
  • pricing is OK, there are cheaper options for specific use cases but if you want superior dashboarding / alarms I haven't seen a good competitor (despite your own Prometheus / Grafana / Kibana dog food)

IMHO NewRelic is "promising since years" ;) good ideas but bad integration between their products. Their Dashboard query language is really nice but lacks critical functions like multiple data sets or advanced calculations. Needless to say you get all of that with Datadog.

Need help setting up a monitoring / logging / alarm infrastructure? Send me a message!

See more
Maik Schröder
Recommends
on
InstanaInstana

Hi Medeti,

you are right. Building based on your stack something with open source is heavy lifting. A lot of people I know start with such a set-up, but quickly run into frustration as they need to dedicated their best people to build a monitoring which is doing the job in a professional way.

As you are microservice focussed and are looking for 'low implementation and maintenance effort', you might want to have a look at INSTANA, which was built with modern tool stacks in mind. https://www.instana.com/apm-for-microservices/

We have a public sand-box available if you just want to have a look at the product once and of course also a free-trial: https://www.instana.com/getting-started-with-apm/

Let me know if you need anything on top.

See more
Attila Fulop
Management Advisor at artkonekt · | 2 upvotes · 357.1K views

I have hands on production experience both with New Relic and Datadog. I personally prefer Datadog over NewRelic because of the UI, the Documentation and the overall user/developer experience.

NewRelic however, can do basically the same things as Datadog can, and some of the features like alerting have been present in NewRelic for longer than in Datadog. The cool thing about NewRelic is their last-summer-updated pricing: you no longer pay per host but after data you send towards New Relic. This can be a huge cost saver depending on your particular setup

https://docs.newrelic.com/docs/accounts/accounts-billing/new-relic-one-pricing-billing/new-relic-one-pricing-billing

I'd go for Datadog, but given you have lots of containers I would also make a cost calculation. If the price difference is significant and there's a budget constraint NewRelic might be the better choice.

See more
Needs advice
on
KibanaKibana
and
New RelicNew Relic

I need to choose a monitoring tool for my project, but currently, my application doesn't have much load or many users. My application is not generating GBs of data. We don't want to send the user information to New Relic because it's a 3rd party tool. And we can deploy Kibana locally on our server. What should I use, Kibana or New Relic?

See more
Replies (3)
Mahdi Perfect
Recommends
on
New RelicNew Relic

Kibana and ELK stack is way far better in enterprise solution. But if you are going to deploy something smal, it does't worth the configuration and maintenance of the ELK stack. You'll have lots of challenges every day. If you have a small team, I do not recommend on-promiss ELK. You can also consider ELK hosted services which are very easier to use, like logz.io

See more
Recommends
on
New RelicNew Relic

New Relic's value to me is the ability to see how end users perceive the application. Kibana is going to be limited to what is sent to it. The value to larger companies is paying New Relic to package up knowledge on what are typical trigger values. If you your scope is small, not a global website for example, and your key outage risks are local events then Kibana would be a low cost solution but you may be the sole provider of configuration logic.

See more
Recommends
on
KibanaKibana

I recommend using Kibana since it can be deployed locally, ensuring data privacy. It’s ideal for light workloads and offers customizable monitoring and visualization without relying on third-party tools like New Relic.

See more
Needs advice
on
GrafanaGrafana
and
KibanaKibana

From a StackShare Community member: “We need better analytics & insights into our Elasticsearch cluster. Grafana, which ships with advanced support for Elasticsearch, looks great but isn’t officially supported/endorsed by Elastic. Kibana, on the other hand, is made and supported by Elastic. I’m wondering what people suggest in this situation."

See more
Replies (7)
Recommends
on
GrafanaGrafana
at

For our Predictive Analytics platform, we have used both Grafana and Kibana

Kibana has predictions and ML algorithms support, so if you need them, you may be better off with Kibana . The multi-variate analysis features it provide are very unique (not available in Grafana).

For everything else, definitely Grafana . Especially the number of supported data sources, and plugins clearly makes Grafana a winner (in just visualization and reporting sense). Creating your own plugin is also very easy. The top pros of Grafana (which it does better than Kibana ) are:

  • Creating and organizing visualization panels
  • Templating the panels on dashboards for repetetive tasks
  • Realtime monitoring, filtering of charts based on conditions and variables
  • Export / Import in JSON format (that allows you to version and save your dashboard as part of git)
See more
Recommends
on
KibanaKibana

I use both Kibana and Grafana on my workplace: Kibana for logging and Grafana for monitoring. Since you already work with Elasticsearch, I think Kibana is the safest choice in terms of ease of use and variety of messages it can manage, while Grafana has still (in my opinion) a strong link to metrics

See more
Bram Verdonck
Recommends
on
GrafanaGrafana
at

After looking for a way to monitor or at least get a better overview of our infrastructure, we found out that Grafana (which I previously only used in ELK stacks) has a plugin available to fully integrate with Amazon CloudWatch . Which makes it way better for our use-case than the offer of the different competitors (most of them are even paid). There is also a CloudFlare plugin available, the platform we use to serve our DNS requests. Although we are a big fan of https://smashing.github.io/ (previously dashing), for now we are starting with Grafana .

See more
Recommends
on
KibanaKibana

I use Kibana because it ships with the ELK stack. I don't find it as powerful as Splunk however it is light years above grepping through log files. We previously used Grafana but found it to be annoying to maintain a separate tool outside of the ELK stack. We were able to get everything we needed from Kibana.

See more
Recommends
on
KibanaKibana

Kibana should be sufficient in this architecture for decent analytics, if stronger metrics is needed then combine with Grafana. Datadog also offers nice overview but there's no need for it in this case unless you need more monitoring and alerting (and more technicalities).

See more
Recommends
on
GrafanaGrafana

I use Grafana because it is without a doubt the best way to visualize metrics

See more
Povilas Brilius
PHP Web Developer at GroundIn Software · | 0 upvotes · 658.1K views
Recommends
on
KibanaKibana
at

@Kibana, of course, because @Grafana looks like amateur sort of solution, crammed with query builder grouping aggregates, but in essence, as recommended by CERN - KIbana is the corporate (startup vectored) decision.

Furthermore, @Kibana comes with complexity adhering ELK stack, whereas @InfluxDB + @Grafana & co. recently have become sophisticated development conglomerate instead of advancing towards a understandable installation step by step inheritance.

See more
Decisions about Datadog, Kibana, and New Relic
Leonardo Henrique da Paixão
Pleno QA Enginneer at SolarMarket · | 15 upvotes · 400.9K views

The objective of this work was to develop a system to monitor the materials of a production line using IoT technology. Currently, the process of monitoring and replacing parts depends on manual services. For this, load cells, microcontroller, Broker MQTT, Telegraf, InfluxDB, and Grafana were used. It was implemented in a workflow that had the function of collecting sensor data, storing it in a database, and visualizing it in the form of weight and quantity. With these developed solutions, he hopes to contribute to the logistics area, in the replacement and control of materials.

See more
Attila Fulop

I haven't heard much about Datadog until about a year ago. Ironically, the NewRelic sales person who I had a series of trainings with was trash talking about Datadog a lot. That drew my attention to Datadog and I gave it a try at another client project where we needed log handling, dashboards and alerting.

In 2019, Datadog was already offering log management and from that perspective, it was ahead of NewRelic. Other than that, from my perspective, the two tools are offering a very-very similar set of tools. Therefore I wouldn't say there's a significant difference between the two, the decision is likely a matter of taste. The pricing is also very similar.

The reasons why we chose Datadog over NewRelic were:

  • The presence of log handling feature (since then, logging is GA at NewRelic as well since falls 2019).
  • The setup was easier even though I already had experience with NewRelic, including participation in NewRelic trainings.
  • The UI of Datadog is more compact and my experience is smoother.
  • The NewRelic UI is very fragmented and New Relic One is just increasing this experience for me.
  • The log feature of Datadog is very well designed, I find very useful the tagging logs with services. The log filtering is also very awesome.

Bottom line is that both tools are great and it makes sense to discover both and making the decision based on your use case. In our case, Datadog was the clear winner due to its UI, ease of setup and the awesome logging and alerting features.

See more
Benoit Larroque
Principal Engineer at Sqreen · | 4 upvotes · 455K views

I chose Datadog APM because the much better APM insights it provides (flamegraph, percentiles by default).

The drawbacks of this decision are we had to move our production monitoring to TimescaleDB + Telegraf instead of NR Insight

NewRelic is definitely easier when starting out. Agent is only a lib and doesn't require a daemon

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Datadog
Pros of Kibana
Pros of New Relic
  • 140
    Monitoring for many apps (databases, web servers, etc)
  • 107
    Easy setup
  • 87
    Powerful ui
  • 84
    Powerful integrations
  • 70
    Great value
  • 54
    Great visualization
  • 46
    Events + metrics = clarity
  • 41
    Notifications
  • 41
    Custom metrics
  • 39
    Flexibility
  • 19
    Free & paid plans
  • 16
    Great customer support
  • 15
    Makes my life easier
  • 10
    Adapts automatically as i scale up
  • 9
    Easy setup and plugins
  • 8
    Super easy and powerful
  • 7
    In-context collaboration
  • 7
    AWS support
  • 6
    Rich in features
  • 5
    Docker support
  • 4
    Cute logo
  • 4
    Simple, powerful, great for infra
  • 4
    Monitor almost everything
  • 4
    Full visibility of applications
  • 4
    Easy to Analyze
  • 4
    Cost
  • 4
    Source control and bug tracking
  • 4
    Best than others
  • 4
    Automation tools
  • 3
    Best in the field
  • 3
    Expensive
  • 3
    Good for Startups
  • 3
    Free setup
  • 2
    APM
  • 88
    Easy to setup
  • 65
    Free
  • 45
    Can search text
  • 21
    Has pie chart
  • 13
    X-axis is not restricted to timestamp
  • 9
    Easy queries and is a good way to view logs
  • 6
    Supports Plugins
  • 4
    Dev Tools
  • 3
    More "user-friendly"
  • 3
    Can build dashboards
  • 2
    Out-of-Box Dashboards/Analytics for Metrics/Heartbeat
  • 2
    Easy to drill-down
  • 1
    Up and running
  • 414
    Easy setup
  • 344
    Really powerful
  • 245
    Awesome visualization
  • 194
    Ease of use
  • 151
    Great ui
  • 106
    Free tier
  • 80
    Great tool for insights
  • 66
    Heroku Integration
  • 55
    Market leader
  • 49
    Peace of mind
  • 21
    Push notifications
  • 20
    Email notifications
  • 17
    Heroku Add-on
  • 16
    Error Detection and Alerting
  • 13
    Multiple language support
  • 11
    SQL Analysis
  • 11
    Server Resources Monitoring
  • 9
    Transaction Tracing
  • 8
    Apdex Scores
  • 8
    Azure Add-on
  • 7
    Analysis of CPU, Disk, Memory, and Network
  • 7
    Detailed reports
  • 6
    Performance of External Services
  • 6
    Error Analysis
  • 6
    Application Availability Monitoring and Alerting
  • 6
    Application Response Times
  • 5
    Most Time Consuming Transactions
  • 5
    JVM Performance Analyzer (Java)
  • 4
    Browser Transaction Tracing
  • 4
    Top Database Operations
  • 4
    Easy to use
  • 3
    Application Map
  • 3
    Weekly Performance Email
  • 3
    Pagoda Box integration
  • 3
    Custom Dashboards
  • 2
    Easy to setup
  • 2
    Background Jobs Transaction Analysis
  • 2
    App Speed Index
  • 1
    Super Expensive
  • 1
    Team Collaboration Tools
  • 1
    Metric Data Retention
  • 1
    Metric Data Resolution
  • 1
    Worst Transactions by User Dissatisfaction
  • 1
    Real User Monitoring Overview
  • 1
    Real User Monitoring Analysis and Breakdown
  • 1
    Time Comparisons
  • 1
    Access to Performance Data API
  • 1
    Incident Detection and Alerting
  • 1
    Best of the best, what more can you ask for
  • 1
    Best monitoring on the market
  • 1
    Rails integration
  • 1
    Free
  • 0
    Proce
  • 0
    Price
  • 0
    Exceptions
  • 0
    Cost

Sign up to add or upvote prosMake informed product decisions

Cons of Datadog
Cons of Kibana
Cons of New Relic
  • 20
    Expensive
  • 4
    No errors exception tracking
  • 2
    External Network Goes Down You Wont Be Logging
  • 1
    Complicated
  • 7
    Unintuituve
  • 4
    Works on top of elastic only
  • 4
    Elasticsearch is huge
  • 3
    Hardweight UI
  • 20
    Pricing model doesn't suit microservices
  • 10
    UI isn't great
  • 7
    Expensive
  • 7
    Visualizations aren't very helpful
  • 5
    Hard to understand why things in your app are breaking

Sign up to add or upvote consMake informed product decisions

What companies use Datadog?
What companies use Kibana?
What companies use New Relic?

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Datadog?
What tools integrate with Kibana?
What tools integrate with New Relic?

Sign up to get full access to all the tool integrationsMake informed product decisions

What are some alternatives to Datadog, Kibana, and New Relic?
Splunk
It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.
Prometheus
Prometheus is a systems and service monitoring system. It collects metrics from configured targets at given intervals, evaluates rule expressions, displays the results, and can trigger alerts if some condition is observed to be true.
Grafana
Grafana is a general purpose dashboard and graph composer. It's focused on providing rich ways to visualize time series metrics, mainly though graphs but supports other ways to visualize data through a pluggable panel architecture. It currently has rich support for for Graphite, InfluxDB and OpenTSDB. But supports other data sources via plugins.
AppDynamics
AppDynamics develops application performance management (APM) solutions that deliver problem resolution for highly distributed applications through transaction flow monitoring and deep diagnostics.
Sentry
Sentry’s Application Monitoring platform helps developers see performance issues, fix errors faster, and optimize their code health.
See all alternatives