Alternatives to Kafka logo

Alternatives to Kafka

ActiveMQ, RabbitMQ, Amazon Kinesis, Apache Spark, and Akka are the most popular alternatives and competitors to Kafka.
10.7K
9.5K
+ 1
527

What is Kafka and what are its top alternatives?

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.
Kafka is a tool in the Message Queue category of a tech stack.
Kafka is an open source tool with 17.1K GitHub stars and 9.1K GitHub forks. Here’s a link to Kafka's open source repository on GitHub

Top Alternatives to Kafka

  • ActiveMQ

    ActiveMQ

    Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License. ...

  • RabbitMQ

    RabbitMQ

    RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received. ...

  • Amazon Kinesis

    Amazon Kinesis

    Amazon Kinesis can collect and process hundreds of gigabytes of data per second from hundreds of thousands of sources, allowing you to easily write applications that process information in real-time, from sources such as web site click-streams, marketing and financial information, manufacturing instrumentation and social media, and operational logs and metering data. ...

  • Apache Spark

    Apache Spark

    Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. ...

  • Akka

    Akka

    Akka is a toolkit and runtime for building highly concurrent, distributed, and resilient message-driven applications on the JVM. ...

  • Apache Storm

    Apache Storm

    Apache Storm is a free and open source distributed realtime computation system. Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate. ...

  • Apache Flink

    Apache Flink

    Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala. ...

  • Redis

    Redis

    Redis is an open source, BSD licensed, advanced key-value store. It is often referred to as a data structure server since keys can contain strings, hashes, lists, sets and sorted sets. ...

Kafka alternatives & related posts

ActiveMQ logo

ActiveMQ

367
858
65
A message broker written in Java together with a full JMS client
367
858
+ 1
65

related ActiveMQ posts

I want to choose Message Queue with the following features - Highly Available, Distributed, Scalable, Monitoring. I have RabbitMQ, ActiveMQ, Kafka and Apache RocketMQ in mind. But I am confused which one to choose.

See more
Naushad Warsi
software developer at klingelnberg · | 1 upvotes · 504.8K views
Shared insights
on
ActiveMQ
RabbitMQ

I use ActiveMQ because RabbitMQ have stopped giving the support for AMQP 1.0 or above version and the earlier version of AMQP doesn't give the functionality to support OAuth.

If OAuth is not required and we can go with AMQP 0.9 then i still recommend rabbitMq.

See more

related RabbitMQ posts

James Cunningham
Operations Engineer at Sentry · | 18 upvotes · 1.1M views
Shared insights
on
Celery
RabbitMQ
at

As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.

Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.

#MessageQueue

See more
Tim Abbott
Shared insights
on
RabbitMQ
Python
Redis
at

We've been using RabbitMQ as Zulip's queuing system since we needed a queuing system. What I like about it is that it scales really well and has good libraries for a wide range of platforms, including our own Python. So aside from getting it running, we've had to put basically 0 effort into making it scale for our needs.

However, there's several things that could be better about it: * It's error messages are absolutely terrible; if ever one of our users ends up getting an error with RabbitMQ (even for simple things like a misconfigured hostname), they always end up needing to get help from the Zulip team, because the errors logs are just inscrutable. As an open source project, we've handled this issue by really carefully scripting the installation to be a failure-proof configuration (in this case, setting the RabbitMQ hostname to 127.0.0.1, so that no user-controlled configuration can break it). But it was a real pain to get there and the process of determining we needed to do that caused a significant amount of pain to folks installing Zulip. * The pika library for Python takes a lot of time to startup a RabbitMQ connection; this means that Zulip server restarts are more disruptive than would be ideal. * It's annoying that you need to run the rabbitmqctl management commands as root.

But overall, I like that it has clean, clear semanstics and high scalability, and haven't been tempted to do the work to migrate to something like Redis (which has its own downsides).

See more
Amazon Kinesis logo

Amazon Kinesis

537
401
4
Store and process terabytes of data each hour from hundreds of thousands of sources
537
401
+ 1
4
PROS OF AMAZON KINESIS
CONS OF AMAZON KINESIS

related Amazon Kinesis posts

John Kodumal

As we've evolved or added additional infrastructure to our stack, we've biased towards managed services. Most new backing stores are Amazon RDS instances now. We do use self-managed PostgreSQL with TimescaleDB for time-series data—this is made HA with the use of Patroni and Consul.

We also use managed Amazon ElastiCache instances instead of spinning up Amazon EC2 instances to run Redis workloads, as well as shifting to Amazon Kinesis instead of Kafka.

See more
Tim Specht
‎Co-Founder and CTO at Dubsmash · | 14 upvotes · 531.9K views

In order to accurately measure & track user behaviour on our platform we moved over quickly from the initial solution using Google Analytics to a custom-built one due to resource & pricing concerns we had.

While this does sound complicated, it’s as easy as clients sending JSON blobs of events to Amazon Kinesis from where we use AWS Lambda & Amazon SQS to batch and process incoming events and then ingest them into Google BigQuery. Once events are stored in BigQuery (which usually only takes a second from the time the client sends the data until it’s available), we can use almost-standard-SQL to simply query for data while Google makes sure that, even with terabytes of data being scanned, query times stay in the range of seconds rather than hours. Before ingesting their data into the pipeline, our mobile clients are aggregating events internally and, once a certain threshold is reached or the app is going to the background, sending the events as a JSON blob into the stream.

In the past we had workers running that continuously read from the stream and would validate and post-process the data and then enqueue them for other workers to write them to BigQuery. We went ahead and implemented the Lambda-based approach in such a way that Lambda functions would automatically be triggered for incoming records, pre-aggregate events, and write them back to SQS, from which we then read them, and persist the events to BigQuery. While this approach had a couple of bumps on the road, like re-triggering functions asynchronously to keep up with the stream and proper batch sizes, we finally managed to get it running in a reliable way and are very happy with this solution today.

#ServerlessTaskProcessing #GeneralAnalytics #RealTimeDataProcessing #BigDataAsAService

See more
Apache Spark logo

Apache Spark

1.9K
2K
121
Fast and general engine for large-scale data processing
1.9K
2K
+ 1
121

related Apache Spark posts

Eric Colson
Chief Algorithms Officer at Stitch Fix · | 20 upvotes · 1.5M views

The algorithms and data infrastructure at Stitch Fix is housed in #AWS. Data acquisition is split between events flowing through Kafka, and periodic snapshots of PostgreSQL DBs. We store data in an Amazon S3 based data warehouse. Apache Spark on Yarn is our tool of choice for data movement and #ETL. Because our storage layer (s3) is decoupled from our processing layer, we are able to scale our compute environment very elastically. We have several semi-permanent, autoscaling Yarn clusters running to serve our data processing needs. While the bulk of our compute infrastructure is dedicated to algorithmic processing, we also implemented Presto for adhoc queries and dashboards.

Beyond data movement and ETL, most #ML centric jobs (e.g. model training and execution) run in a similarly elastic environment as containers running Python and R code on Amazon EC2 Container Service clusters. The execution of batch jobs on top of ECS is managed by Flotilla, a service we built in house and open sourced (see https://github.com/stitchfix/flotilla-os).

At Stitch Fix, algorithmic integrations are pervasive across the business. We have dozens of data products actively integrated systems. That requires serving layer that is robust, agile, flexible, and allows for self-service. Models produced on Flotilla are packaged for deployment in production using Khan, another framework we've developed internally. Khan provides our data scientists the ability to quickly productionize those models they've developed with open source frameworks in Python 3 (e.g. PyTorch, sklearn), by automatically packaging them as Docker containers and deploying to Amazon ECS. This provides our data scientist a one-click method of getting from their algorithms to production. We then integrate those deployments into a service mesh, which allows us to A/B test various implementations in our product.

For more info:

#DataScience #DataStack #Data

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 7 upvotes · 794.7K views

Why we built Marmaray, an open source generic data ingestion and dispersal framework and library for Apache Hadoop :

Built and designed by our Hadoop Platform team, Marmaray is a plug-in-based framework built on top of the Hadoop ecosystem. Users can add support to ingest data from any source and disperse to any sink leveraging the use of Apache Spark . The name, Marmaray, comes from a tunnel in Turkey connecting Europe and Asia. Similarly, we envisioned Marmaray within Uber as a pipeline connecting data from any source to any sink depending on customer preference:

https://eng.uber.com/marmaray-hadoop-ingestion-open-source/

(Direct GitHub repo: https://github.com/uber/marmaray Kafka Kafka Manager )

See more
Akka logo

Akka

689
659
72
Build powerful concurrent & distributed applications more easily
689
659
+ 1
72

related Akka posts

To solve the problem of scheduling and executing arbitrary tasks in its distributed infrastructure, PagerDuty created an open-source tool called Scheduler. Scheduler is written in Scala and uses Cassandra for task persistence. It also adds Apache Kafka to handle task queuing and partitioning, with Akka to structure the library’s concurrency.

The service’s logic schedules a task by passing it to the Scheduler’s Scala API, which serializes the task metadata and enqueues it into Kafka. Scheduler then consumes the tasks, and posts them to Cassandra to prevent data loss.

See more
Shared insights
on
Akka
Kafka

I decided to use Akka instead of Kafka streams because I have personal relationships at @Lightbend.

See more
Apache Storm logo

Apache Storm

166
204
21
Distributed and fault-tolerant realtime computation
166
204
+ 1
21
CONS OF APACHE STORM
    No cons available

    related Apache Storm posts

    Marc Bollinger
    Infra & Data Eng Manager at Thumbtack · | 4 upvotes · 343.5K views

    Lumosity is home to the world's largest cognitive training database, a responsibility we take seriously. For most of the company's history, our analysis of user behavior and training data has been powered by an event stream--first a simple Node.js pub/sub app, then a heavyweight Ruby app with stronger durability. Both supported decent throughput and latency, but they lacked some major features supported by existing open-source alternatives: replaying existing messages (also lacking in most message queue-based solutions), scaling out many different readers for the same stream, the ability to leverage existing solutions for reading and writing, and possibly most importantly: the ability to hire someone externally who already had expertise.

    We ultimately migrated to Kafka in early- to mid-2016, citing both industry trends in companies we'd talked to with similar durability and throughput needs, the extremely strong documentation and community. We pored over Kyle Kingsbury's Jepsen post (https://aphyr.com/posts/293-jepsen-Kafka), as well as Jay Kreps' follow-up (http://blog.empathybox.com/post/62279088548/a-few-notes-on-kafka-and-jepsen), talked at length with Confluent folks and community members, and still wound up running parallel systems for quite a long time, but ultimately, we've been very, very happy. Understanding the internals and proper levers takes some commitment, but it's taken very little maintenance once configured. Since then, the Confluent Platform community has grown and grown; we've gone from doing most development using custom Scala consumers and producers to being 60/40 Kafka Streams/Connects.

    We originally looked into Storm / Heron , and we'd moved on from Redis pub/sub. Heron looks great, but we already had a programming model across services that was more akin to consuming a message consumers than required a topology of bolts, etc. Heron also had just come out while we were starting to migrate things, and the community momentum and direction of Kafka felt more substantial than the older Storm. If we were to start the process over again today, we might check out Pulsar , although the ecosystem is much younger.

    To find out more, read our 2017 engineering blog post about the migration!

    See more
    Apache Flink logo

    Apache Flink

    303
    424
    28
    Fast and reliable large-scale data processing engine
    303
    424
    + 1
    28

    related Apache Flink posts

    Surabhi Bhawsar
    Technical Architect at Pepcus · | 7 upvotes · 444.1K views
    Shared insights
    on
    Kafka
    Apache Flink

    I need to build the Alert & Notification framework with the use of a scheduled program. We will analyze the events from the database table and filter events that are falling under a day timespan and send these event messages over email. Currently, we are using Kafka Pub/Sub for messaging. The customer wants us to move on Apache Flink, I am trying to understand how Apache Flink could be fit better for us.

    See more

    I have to build a data processing application with an Apache Beam stack and Apache Flink runner on an Amazon EMR cluster. I saw some instability with the process and EMR clusters that keep going down. Here, the Apache Beam application gets inputs from Kafka and sends the accumulative data streams to another Kafka topic. Any advice on how to make the process more stable?

    See more

    related Redis posts

    Robert Zuber

    We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

    As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

    When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

    See more

    I'm working as one of the engineering leads in RunaHR. As our platform is a Saas, we thought It'd be good to have an API (We chose Ruby and Rails for this) and a SPA (built with React and Redux ) connected. We started the SPA with Create React App since It's pretty easy to start.

    We use Jest as the testing framework and react-testing-library to test React components. In Rails we make tests using RSpec.

    Our main database is PostgreSQL, but we also use MongoDB to store some type of data. We started to use Redis  for cache and other time sensitive operations.

    We have a couple of extra projects: One is an Employee app built with React Native and the other is an internal back office dashboard built with Next.js for the client and Python in the backend side.

    Since we have different frontend apps we have found useful to have Bit to document visual components and utils in JavaScript.

    See more