What is Amazon SQS and what are its top alternatives?
Top Alternatives to Amazon SQS
- Amazon MQ
Amazon MQ is a managed message broker service for Apache ActiveMQ that makes it easy to set up and operate message brokers in the cloud. ...
- Kafka
Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design. ...
- Redis
Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...
- ActiveMQ
Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License. ...
- Amazon SNS
Amazon Simple Notification Service makes it simple and cost-effective to push to mobile devices such as iPhone, iPad, Android, Kindle Fire, and internet connected smart devices, as well as pushing to other distributed services. Besides pushing cloud notifications directly to mobile devices, SNS can also deliver notifications by SMS text message or email, to Simple Queue Service (SQS) queues, or to any HTTP endpoint. ...
- RabbitMQ
RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received. ...
- Amazon Kinesis
Amazon Kinesis can collect and process hundreds of gigabytes of data per second from hundreds of thousands of sources, allowing you to easily write applications that process information in real-time, from sources such as web site click-streams, marketing and financial information, manufacturing instrumentation and social media, and operational logs and metering data. ...
- Azure Service Bus
It is a cloud messaging system for connecting apps and devices across public and private clouds. You can depend on it when you need highly-reliable cloud messaging service between applications and services, even when one or more is offline. ...
Amazon SQS alternatives & related posts
- Supports low IQ developers7
- Supports existing protocols (JMS, NMS, AMQP, STOMP, …)3
- Easy to migrate existing messaging service2
- Slow AF4
related Amazon MQ posts
I want to schedule a message. Amazon SQS provides a delay of 15 minutes, but I want it in some hours.
Example: Let's say a Message1 is consumed by a consumer A but somehow it failed inside the consumer. I would want to put it in a queue and retry after 4hrs. Can I do this in Amazon MQ? I have seen in some Amazon MQ videos saying scheduling messages can be done. But, I'm not sure how.
How is CloudAMQP different from Amazon MQ?
which is the better one to use?
- High-throughput126
- Distributed119
- Scalable92
- High-Performance86
- Durable66
- Publish-Subscribe38
- Simple-to-use19
- Open source18
- Written in Scala and java. Runs on JVM12
- Message broker + Streaming system9
- KSQL4
- Avro schema integration4
- Robust4
- Suport Multiple clients3
- Extremely good parallelism constructs2
- Partioned, replayable log2
- Simple publisher / multi-subscriber model1
- Fun1
- Flexible1
- Non-Java clients are second-class citizens32
- Needs Zookeeper29
- Operational difficulties9
- Terrible Packaging5
related Kafka posts
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.
Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.
We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.
Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.
Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.
#BigData #AWS #DataScience #DataEngineering
- Performance886
- Super fast542
- Ease of use513
- In-memory cache444
- Advanced key-value cache324
- Open source194
- Easy to deploy182
- Stable164
- Free155
- Fast121
- High-Performance42
- High Availability40
- Data Structures35
- Very Scalable32
- Replication24
- Great community22
- Pub/Sub22
- "NoSQL" key-value data store19
- Hashes16
- Sets13
- Sorted Sets11
- NoSQL10
- Lists10
- Async replication9
- BSD licensed9
- Bitmaps8
- Integrates super easy with Sidekiq for Rails background8
- Keys with a limited time-to-live7
- Open Source7
- Lua scripting6
- Strings6
- Awesomeness for Free5
- Hyperloglogs5
- Transactions4
- Outstanding performance4
- Runs server side LUA4
- LRU eviction of keys4
- Feature Rich4
- Written in ANSI C4
- Networked4
- Data structure server3
- Performance & ease of use3
- Dont save data if no subscribers are found2
- Automatic failover2
- Easy to use2
- Temporarily kept on disk2
- Scalable2
- Existing Laravel Integration2
- Channels concept2
- Object [key/value] size each 500 MB2
- Simple2
- Cannot query objects directly15
- No secondary indexes for non-numeric data types3
- No WAL1
related Redis posts
StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.
Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!
#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
- Easy to use18
- Open source14
- Efficient13
- JMS compliant10
- High Availability6
- Scalable5
- Distributed Network of brokers3
- Persistence3
- Support XA (distributed transactions)3
- Docker delievery1
- Highly configurable1
- RabbitMQ0
- ONLY Vertically Scalable1
- Support1
- Low resilience to exceptions and interruptions1
- Difficult to scale1
related ActiveMQ posts
I want to choose Message Queue with the following features - Highly Available, Distributed, Scalable, Monitoring. I have RabbitMQ, ActiveMQ, Kafka and Apache RocketMQ in mind. But I am confused which one to choose.
I use ActiveMQ because RabbitMQ have stopped giving the support for AMQP 1.0 or above version and the earlier version of AMQP doesn't give the functionality to support OAuth.
If OAuth is not required and we can go with AMQP 0.9 then i still recommend rabbitMq.
- Low cost12
- Supports multi subscribers6
related Amazon SNS posts
We decided to use AWS Lambda for several serverless tasks such as
- Managing AWS backups
- Processing emails received on Amazon SES and stored to Amazon S3 and notified via Amazon SNS, so as to push a message on our Redis so our Sidekiq Rails workers can process inbound emails
- Pushing some relevant Amazon CloudWatch metrics and alarms to Slack
Hi, We are looking to implement 2FA - so that users would be sent a Verification code over their Email and SMS to their phone.
We faced some limitations with Amazon SNS where we could either send the verification code to email OR to the phone number, while we want to send it to both.
We also are looking to make the 2FA more flexible by adding any other options later on.
What are the best alternatives to SNS for this use case and purpose? Looked at Twilio but want to explore other options before making a decision.
Would be great to know what the experience with Twilio has been, especially the limitations/issues with Twilio...
Appreciate any input from users of Twilio and others who have had similar use cases.
- It's fast and it works with good metrics/monitoring235
- Ease of configuration80
- I like the admin interface60
- Easy to set-up and start with52
- Durable22
- Standard protocols19
- Intuitive work through python19
- Written primarily in Erlang11
- Simply superb9
- Completeness of messaging patterns7
- Reliable4
- Scales to 1 million messages per second4
- Better than most traditional queue based message broker3
- Distributed3
- Supports MQTT3
- Supports AMQP3
- Clear documentation with different scripting language2
- Better routing system2
- Inubit Integration2
- Great ui2
- High performance2
- Reliability2
- Open-source2
- Runs on Open Telecom Platform2
- Clusterable2
- Delayed messages2
- Supports Streams1
- Supports STOMP1
- Supports JMS1
- Too complicated cluster/HA config and management9
- Needs Erlang runtime. Need ops good with Erlang runtime6
- Configuration must be done first, not by your code5
- Slow4
related RabbitMQ posts
As Sentry runs throughout the day, there are about 50 different offline tasks that we execute—anything from “process this event, pretty please” to “send all of these cool people some emails.” There are some that we execute once a day and some that execute thousands per second.
Managing this variety requires a reliably high-throughput message-passing technology. We use Celery's RabbitMQ implementation, and we stumbled upon a great feature called Federation that allows us to partition our task queue across any number of RabbitMQ servers and gives us the confidence that, if any single server gets backlogged, others will pitch in and distribute some of the backlogged tasks to their consumers.
#MessageQueue
Around the time of their Series A, Pinterest’s stack included Python and Django, with Tornado and Node.js as web servers. Memcached / Membase and Redis handled caching, with RabbitMQ handling queueing. Nginx, HAproxy and Varnish managed static-delivery and load-balancing, with persistent data storage handled by MySQL.
Amazon Kinesis
- Scalable9
- Cost3
related Amazon Kinesis posts
We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.
To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas
To build #Webapps we decided to use Angular 2 with RxJS
#Devops - GitHub , Travis CI , Terraform , Docker , Serverless
As we've evolved or added additional infrastructure to our stack, we've biased towards managed services. Most new backing stores are Amazon RDS instances now. We do use self-managed PostgreSQL with TimescaleDB for time-series data—this is made HA with the use of Patroni and Consul.
We also use managed Amazon ElastiCache instances instead of spinning up Amazon EC2 instances to run Redis workloads, as well as shifting to Amazon Kinesis instead of Kafka.
- Easy Integration with .Net4
- Cloud Native2
- Use while high messaging need1
- Limited features in Basic tier1
- Skills can only be used in Azure - vendor lock-in1
- Lacking in JMS support1
- Observability of messages in the queue is lacking1
related Azure Service Bus posts
Want to get the differences in features and enhancement, pros and cons, and also how to Migrate from IBM MQ to Azure Service Bus.