Amazon Kinesis vs Elasticsearch

Need advice about which tool to choose?Ask the StackShare community!

Amazon Kinesis

640
507
+ 1
11
Elasticsearch

26.2K
19.8K
+ 1
1.6K
Add tool

Amazon Kinesis vs Elasticsearch: What are the differences?

Developers describe Amazon Kinesis as "Store and process terabytes of data each hour from hundreds of thousands of sources". Amazon Kinesis can collect and process hundreds of gigabytes of data per second from hundreds of thousands of sources, allowing you to easily write applications that process information in real-time, from sources such as web site click-streams, marketing and financial information, manufacturing instrumentation and social media, and operational logs and metering data. On the other hand, Elasticsearch is detailed as "Open Source, Distributed, RESTful Search Engine". Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

Amazon Kinesis belongs to "Real-time Data Processing" category of the tech stack, while Elasticsearch can be primarily classified under "Search as a Service".

Some of the features offered by Amazon Kinesis are:

  • Real-time Processing- Amazon Kinesis enables you to collect and analyze information in real-time, allowing you to answer questions about the current state of your data, from inventory levels to stock trade frequencies, rather than having to wait for an out-of-date report.
  • Easy to use- You can create a new stream, set the throughput requirements, and start streaming data quickly and easily. Amazon Kinesis automatically provisions and manages the storage required to reliably and durably collect your data stream.
  • High throughput. Elastic.- Amazon Kinesis seamlessly scales to match the data throughput rate and volume of your data, from megabytes to terabytes per hour. Amazon Kinesis will scale up or down based on your needs.

On the other hand, Elasticsearch provides the following key features:

  • Distributed and Highly Available Search Engine.
  • Multi Tenant with Multi Types.
  • Various set of APIs including RESTful

Elasticsearch is an open source tool with 41.9K GitHub stars and 14K GitHub forks. Here's a link to Elasticsearch's open source repository on GitHub.

Instacart, Slack, and Stack Exchange are some of the popular companies that use Elasticsearch, whereas Amazon Kinesis is used by Instacart, Lyft, and Zillow. Elasticsearch has a broader approval, being mentioned in 1976 company stacks & 936 developers stacks; compared to Amazon Kinesis, which is listed in 130 company stacks and 24 developer stacks.

Advice on Amazon Kinesis and Elasticsearch
Rana Usman Shahid
Chief Technology Officer at TechAvanza · | 5 upvotes · 174K views
Needs advice
on
FirebaseFirebaseElasticsearchElasticsearch
and
AlgoliaAlgolia

Hey everybody! (1) I am developing an android application. I have data of around 3 million record (less than a TB). I want to save that data in the cloud. Which company provides the best cloud database services that would suit my scenario? It should be secured, long term useable, and provide better services. I decided to use Firebase Realtime database. Should I stick with Firebase or are there any other companies that provide a better service?

(2) I have the functionality of searching data in my app. Same data (less than a TB). Which search solution should I use in this case? I found Elasticsearch and Algolia search. It should be secure and fast. If any other company provides better services than these, please feel free to suggest them.

Thank you!

See more
Replies (2)
Josh Dzielak
Co-Founder & CTO at Orbit · | 7 upvotes · 132.4K views
Recommends
AlgoliaAlgolia

Hi Rana, good question! From my Firebase experience, 3 million records is not too big at all, as long as the cost is within reason for you. With Firebase you will be able to access the data from anywhere, including an android app, and implement fine-grained security with JSON rules. The real-time-ness works perfectly. As a fully managed database, Firebase really takes care of everything. The only thing to watch out for is if you need complex query patterns - Firestore (also in the Firebase family) can be a better fit there.

To answer question 2: the right answer will depend on what's most important to you. Algolia is like Firebase is that it is fully-managed, very easy to set up, and has great SDKs for Android. Algolia is really a full-stack search solution in this case, and it is easy to connect with your Firebase data. Bear in mind that Algolia does cost money, so you'll want to make sure the cost is okay for you, but you will save a lot of engineering time and never have to worry about scale. The search-as-you-type performance with Algolia is flawless, as that is a primary aspect of its design. Elasticsearch can store tons of data and has all the flexibility, is hosted for cheap by many cloud services, and has many users. If you haven't done a lot with search before, the learning curve is higher than Algolia for getting the results ranked properly, and there is another learning curve if you want to do the DevOps part yourself. Both are very good platforms for search, Algolia shines when buliding your app is the most important and you don't want to spend many engineering hours, Elasticsearch shines when you have a lot of data and don't mind learning how to run and optimize it.

See more
Mike Endale
Recommends
Cloud FirestoreCloud Firestore

Rana - we use Cloud Firestore at our startup. It handles many million records without any issues. It provides you the same set of features that the Firebase Realtime Database provides on top of the indexing and security trims. The only thing to watch out for is to make sure your Cloud Functions have proper exception handling and there are no infinite loop in the code. This will be too costly if not caught quickly.

For search; Algolia is a great option, but cost is a real consideration. Indexing large number of records can be cost prohibitive for most projects. Elasticsearch is a solid alternative, but requires a little additional work to configure and maintain if you want to self-host.

Hope this helps.

See more
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Amazon Kinesis
Pros of Elasticsearch
  • 7
    Scalable
  • 4
    Cons
  • 321
    Powerful api
  • 311
    Great search engine
  • 231
    Open source
  • 213
    Restful
  • 200
    Near real-time search
  • 96
    Free
  • 83
    Search everything
  • 54
    Easy to get started
  • 45
    Analytics
  • 26
    Distributed
  • 6
    Fast search
  • 5
    More than a search engine
  • 3
    Great docs
  • 3
    Awesome, great tool
  • 3
    Easy to scale
  • 2
    Document Store
  • 2
    Nosql DB
  • 2
    Great piece of software
  • 2
    Great customer support
  • 2
    Intuitive API
  • 2
    Fast
  • 2
    Easy setup
  • 2
    Highly Available
  • 1
    Not stable
  • 1
    Scalability
  • 1
    Open
  • 1
    Reliable
  • 1
    Github
  • 1
    Elaticsearch
  • 1
    Actively developing
  • 1
    Responsive maintainers on GitHub
  • 1
    Ecosystem
  • 1
    Easy to get hot data
  • 1
    Potato
  • 0
    Community

Sign up to add or upvote prosMake informed product decisions

Cons of Amazon Kinesis
Cons of Elasticsearch
  • 2
    Cost
  • 6
    Resource hungry
  • 6
    Diffecult to get started
  • 5
    Expensive
  • 3
    Hard to keep stable at large scale

Sign up to add or upvote consMake informed product decisions

- No public GitHub repository available -

What is Amazon Kinesis?

Amazon Kinesis can collect and process hundreds of gigabytes of data per second from hundreds of thousands of sources, allowing you to easily write applications that process information in real-time, from sources such as web site click-streams, marketing and financial information, manufacturing instrumentation and social media, and operational logs and metering data.

What is Elasticsearch?

Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

Need advice about which tool to choose?Ask the StackShare community!

What companies use Amazon Kinesis?
What companies use Elasticsearch?
See which teams inside your own company are using Amazon Kinesis or Elasticsearch.
Sign up for Private StackShareLearn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Amazon Kinesis?
What tools integrate with Elasticsearch?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

Jul 2 2019 at 9:34PM

Segment

Google AnalyticsAmazon S3New Relic+25
10
5899
May 21 2019 at 12:20AM

Elastic

ElasticsearchKibanaLogstash+4
12
3305
GitHubPythonReact+42
47
39408
What are some alternatives to Amazon Kinesis and Elasticsearch?
Kafka
Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.
Apache Spark
Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
Amazon SQS
Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.
Amazon Kinesis Firehose
Amazon Kinesis Firehose is the easiest way to load streaming data into AWS. It can capture and automatically load streaming data into Amazon S3 and Amazon Redshift, enabling near real-time analytics with existing business intelligence tools and dashboards you’re already using today.
Firehose.io
Firehose is both a Rack application and JavaScript library that makes building real-time web applications possible.
See all alternatives