What is Google Compute Engine and what are its top alternatives?
Google Compute Engine is a flexible and scalable Infrastructure as a Service (IaaS) that allows users to create virtual machines and run various workloads on Google's infrastructure. Key features include customizable virtual machine configurations, global load balancing, automatic scaling, and integration with other Google Cloud services. However, limitations include complex pricing structure, lack of Windows support for some machine types, and the need for expertise in managing virtual machine instances.
- Amazon EC2: Amazon Elastic Compute Cloud (EC2) offers a wide range of instance types, flexible pricing options, and integration with other AWS services. Pros include a vast global infrastructure, pay-as-you-go pricing model, and a wide selection of instance types. Cons may include complex pricing and additional costs for data transfer.
- Microsoft Azure Virtual Machines: Azure VMs provide on-demand computing power with various sizes and configurations to meet different workload requirements. Key features include hybrid cloud connectivity, auto-scaling, and support for Windows and Linux environments. Pros include easy integration with other Azure services, while cons may include potential downtime during updates.
- DigitalOcean Droplets: DigitalOcean offers Droplets as simple, scalable virtual machines with SSD storage and global data centers. Features include easy-to-use control panel, fixed pricing, and seamless integration with other DigitalOcean services. Pros include straightforward pricing and quick deployment, while cons may include limited instance types and services compared to bigger cloud providers.
- Vultr: Vultr provides high-performance cloud compute instances with multiple locations, SSD storage, and flexible configurations. Key features include hourly billing, fast provisioning, and a user-friendly control panel. Pros include competitive pricing and worldwide data centers, while cons may include fewer advanced features compared to major cloud providers.
- IBM Cloud Virtual Servers: IBM Cloud offers Virtual Servers with customizable configurations, scalable resources, and high availability. Features include integrated security, backup options, and support for various operating systems. Pros include IBM's enterprise-level security and compliance, while cons may include higher pricing for advanced features.
- Oracle Cloud Infrastructure Compute: Oracle's Compute service provides customizable virtual machines with high performance, security, and reliability. Key features include bare metal instances, advanced networking options, and integration with Oracle Cloud services. Pros include strong security features and reliability, while cons may include limited global presence compared to other cloud providers.
- Alibaba Cloud Elastic Compute Service: Alibaba's ECS offers scalable virtual servers with burstable instances, flexible billing options, and a vast global network. Features include auto-scaling, load balancing, and integrated security services. Pros include competitive pricing and extensive support for global customers, while cons may include less familiarity outside of Asia.
- UpCloud: UpCloud provides high-performance cloud servers with SSD storage, private networking, and customizable configurations. Key features include fast deployment, hourly billing, and an intuitive control panel. Pros include superior performance and reliability, while cons may include limited global presence and fewer data center locations compared to larger providers.
- Linode: Linode offers cloud hosting with simple pricing, SSD storage, and a variety of instance types. Features include fast networking, API access, and a rich library of tutorials and guides. Pros include affordable pricing and excellent customer support, while cons may include limited managed services and smaller global reach compared to major players.
- Scaleway: Scaleway provides virtual cloud servers with ARM architecture, flexible configurations, and bare metal options. Key features include high-performance computing, private networks, and pay-as-you-go billing. Pros include innovative ARM-based servers and competitive pricing, while cons may include fewer cloud services and a smaller customer base compared to larger providers.
Top Alternatives to Google Compute Engine
- Google App Engine
Google has a reputation for highly reliable, high performance infrastructure. With App Engine you can take advantage of the 10 years of knowledge Google has in running massively scalable, performance driven systems. App Engine applications are easy to build, easy to maintain, and easy to scale as your traffic and data storage needs grow. ...
- DigitalOcean
We take the complexities out of cloud hosting by offering blazing fast, on-demand SSD cloud servers, straightforward pricing, a simple API, and an easy-to-use control panel. ...
- Google Cloud Platform
It helps you build what's next with secure infrastructure, developer tools, APIs, data analytics and machine learning. It is a suite of cloud computing services that runs on the same infrastructure that Google uses internally for its end-user products, such as Google Search and YouTube. ...
- Amazon EC2
It is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale computing easier for developers. ...
- Microsoft Azure
Azure is an open and flexible cloud platform that enables you to quickly build, deploy and manage applications across a global network of Microsoft-managed datacenters. You can build applications using any language, tool or framework. And you can integrate your public cloud applications with your existing IT environment. ...
- Kubernetes
Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...
- NGINX
nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy server, written by Igor Sysoev. According to Netcraft nginx served or proxied 30.46% of the top million busiest sites in Jan 2018. ...
- Apache HTTP Server
The Apache HTTP Server is a powerful and flexible HTTP/1.1 compliant web server. Originally designed as a replacement for the NCSA HTTP Server, it has grown to be the most popular web server on the Internet. ...
Google Compute Engine alternatives & related posts
Google App Engine
- Easy to deploy145
- Auto scaling106
- Good free plan80
- Easy management62
- Scalability56
- Low cost35
- Comprehensive set of features32
- All services in one place28
- Simple scaling22
- Quick and reliable cloud servers19
- Granular Billing6
- Easy to develop and unit test5
- Monitoring gives comprehensive set of key indicators5
- Really easy to quickly bring up a full stack3
- Create APIs quickly with cloud endpoints3
- No Ops2
- Mostly up2
related Google App Engine posts
So, the shift from Amazon EC2 to Google App Engine and generally #AWS to #GCP was a long decision and in the end, it's one that we've taken with eyes open and that we reserve the right to modify at any time. And to be clear, we continue to do a lot of stuff with AWS. But, by default, the content of the decision was, for our consumer-facing products, we're going to use GCP first. And if there's some reason why we don't think that's going to work out great, then we'll happily use AWS. In practice, that hasn't really happened. We've been able to meet almost 100% of our needs in GCP.
So it's basically mostly Google Kubernetes Engine , we're mostly running stuff on Kubernetes right now.
#AWStoGCPmigration #cloudmigration #migration
In #Aliadoc, we're exploring the crowdfunding option to get traction before launch. We are building a SaaS platform for website design customization.
For the Admin UI and website editor we use React and we're currently transitioning from a Create React App setup to a custom one because our needs have become more specific. We use CloudFlare as much as possible, it's a great service.
For routing dynamic resources and proxy tasks to feed websites to the editor we leverage CloudFlare Workers for improved responsiveness. We use Firebase for our hosting needs and user authentication while also using several Cloud Functions for Firebase to interact with other services along with Google App Engine and Google Cloud Storage, but also the Real Time Database is on the radar for collaborative website editing.
We generally hate configuration but honestly because of the stage of our project we lack resources for doing heavy sysops work. So we are basically just relying on Serverless technologies as much as we can to do all server side processing.
Visual Studio Code definitively makes programming a much easier and enjoyable task, we just love it. We combine it with Bitbucket for our source code control needs.
DigitalOcean
- Great value for money560
- Simple dashboard364
- Good pricing362
- Ssds300
- Nice ui250
- Easy configuration191
- Great documentation156
- Ssh access138
- Great community135
- Ubuntu24
- Docker13
- IPv6 support12
- Private networking10
- 99.99% uptime SLA8
- Simple API7
- Great tutorials7
- 55 Second Provisioning6
- One Click Applications5
- Dokku4
- LAMP4
- Debian4
- CoreOS4
- Node.js4
- 1Gb/sec Servers3
- Word Press3
- Mean3
- LEMP3
- Simple Control Panel3
- Ghost3
- Runs CoreOS2
- Quick and no nonsense service2
- Django2
- Good Tutorials2
- Speed2
- Ruby on Rails2
- GitLab2
- Hex Core machines with dedicated ECC Ram and RAID SSD s2
- CentOS1
- Spaces1
- KVM Virtualization1
- Amazing Hardware1
- Transfer Globally1
- Fedora1
- FreeBSD1
- Drupal1
- FreeBSD Amp1
- Magento1
- ownCloud1
- RedMine1
- My go to server provider1
- Ease and simplicity1
- Nice1
- Find it superfitting with my requirements (SSD, ssh.1
- Easy Setup1
- Cheap1
- Static IP1
- It's the easiest to get started for small projects1
- Automatic Backup1
- Great support1
- Quick and easy to set up1
- Servers on demand - literally1
- Reliability1
- Variety of services0
- Managed Kubernetes0
- No live support chat3
- Pricing3
related DigitalOcean posts
This week, we finally released NurseryPeople.com. In the end, I chose to provision our server on DigitalOcean. So far, I am SO happy with that decision. Although setting everything up was a challenge, and I learned a lot, DigitalOceans blogs helped in so many ways. I was able to set up nginx and the Laravel web app pretty smoothly. I am also using Buddy for deploying changes made in git, which is super awesome. All I have to do in order to deploy is push my code to my private repo, and buddy transfers everything over to DigitalOcean. So far, we haven't had any downtime and DigitalOceans prices are quite fair for the power under the hood.
Hello, I'm currently writing an e-commerce website with Laravel and Laravel Nova (as an admin panel). I want to start deploying the app and created a DigitalOcean account. After some searches about the deployment process, I saw that the setup via DigitalOcean (using Droplets) isn't very easy for beginners. Now I'm not sure how to deploy my app. I am in between Laravel Forge and DigitalOcean (?Apps Platform or Droplets?). I've read that Heroku and Laravel Vapor are a bit expensive. That's why I didn't consider them yet. I'd be happy to read your opinions on that topic!
- Good app Marketplace for Beginner and Advanced User5
- 1 year free trial credit USD3004
- Premium tier IP address3
- Live chat support3
- Cheap3
related Google Cloud Platform posts
I want to make application like Zomato, #Foodpanda.
Which stack is best for this? As I have expertise in Java and Angular. What is the best stack you will recommend?
Web Micro-service / Mono? Angular / React? Amazon Web Services (AWS) / Google Cloud Platform? DB : SQL or No SQL
Mob Cross-platform: React Native / Flutter
Note: We are a team of 5. what languages do you recommend if I go with microservices?
Thanks
My days of using Firebase are over! I want to move to something scalable and possibly less cheap. In the past seven days I have done my research on what type of DB best fits my needs, and have chosen to go with the nonrelational DB; MongoDB. Although I understand it, I need help understanding how to set up the architecture. I have the client app (Flutter/ Dart) that would make HTTP requests to the web server (node/express), and from there the webserver would query data from MongoDB.
How should I go about hosting the web server and MongoDb; do they have to be hosted together (this is where a lot of my confusion is)? Based on the research I've done, it seems like the standard practice would be to host on a VM provided by services such as Amazon Web Services, Google Cloud Platform, Microsoft Azure, etc. If there are better ways, such as possibly self-hosting (more responsibility), should I? Anyways, I just want to confirm with a community (you guys) to make sure I do this right, all input is highly appreciated.
- Quick and reliable cloud servers647
- Scalability515
- Easy management393
- Low cost277
- Auto-scaling271
- Market leader89
- Backed by amazon80
- Reliable79
- Free tier67
- Easy management, scalability58
- Flexible13
- Easy to Start10
- Widely used9
- Web-scale9
- Elastic9
- Node.js API7
- Industry Standard5
- Lots of configuration options4
- GPU instances2
- Simpler to understand and learn1
- Extremely simple to use1
- Amazing for individuals1
- All the Open Source CLI tools you could want.1
- Ui could use a lot of work13
- High learning curve when compared to PaaS6
- Extremely poor CPU performance3
related Amazon EC2 posts
To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.
Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.
We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.
Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.
Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.
#BigData #AWS #DataScience #DataEngineering
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Microsoft Azure
- Scales well and quite easy114
- Can use .Net or open source tools96
- Startup friendly81
- Startup plans via BizSpark73
- High performance62
- Wide choice of services38
- Low cost32
- Lots of integrations32
- Reliability31
- Twillio & Github are directly accessible19
- RESTful API13
- PaaS10
- Enterprise Grade10
- Startup support10
- DocumentDB8
- In person support7
- Free for students6
- Service Bus6
- Virtual Machines6
- Redis Cache5
- It rocks5
- Storage, Backup, and Recovery4
- Infrastructure Services4
- SQL Databases4
- CDN4
- Integration3
- Scheduler3
- Preview Portal3
- HDInsight3
- Built on Node.js3
- Big Data3
- BizSpark 60k Azure Benefit3
- IaaS3
- Backup2
- Open cloud2
- Web2
- SaaS2
- Big Compute2
- Mobile2
- Media2
- Dev-Test2
- Storage2
- StorSimple2
- Machine Learning2
- Stream Analytics2
- Data Factory2
- Event Hubs2
- Virtual Network2
- ExpressRoute2
- Traffic Manager2
- Media Services2
- BizTalk Services2
- Site Recovery2
- Active Directory2
- Multi-Factor Authentication2
- Visual Studio Online2
- Application Insights2
- Automation2
- Operational Insights2
- Key Vault2
- Infrastructure near your customers2
- Easy Deployment2
- Enterprise customer preferences1
- Documentation1
- Security1
- Best cloud platfrom1
- Easy and fast to start with1
- Remote Debugging1
- Confusing UI7
- Expensive plesk on Azure2
related Microsoft Azure posts
I'm planning to create a web application and also a mobile application to provide a very good shopping experience to the end customers. Shortly, my application will be aggregate the product details from difference sources and giving a clear picture to the user that when and where to buy that product with best in Quality and cost.
I have planned to develop this in many milestones for adding N number of features and I have picked my first part to complete the core part (aggregate the product details from different sources).
As per my work experience and knowledge, I have chosen the followings stacks to this mission.
UI: I would like to develop this application using React, React Router and React Native since I'm a little bit familiar on this and also most importantly these will help on developing both web and mobile apps. In addition, I'm gonna use the stacks JavaScript, jQuery, jQuery UI, jQuery Mobile, Bootstrap wherever required.
Service: I have planned to use Java as the main business layer language as I have 7+ years of experience on this I believe I can do better work using Java than other languages. In addition, I'm thinking to use the stacks Node.js.
Database and ORM: I'm gonna pick MySQL as DB and Hibernate as ORM since I have a piece of good knowledge and also work experience on this combination.
Search Engine: I need to deal with a large amount of product data and it's in-detailed info to provide enough details to end user at the same time I need to focus on the performance area too. so I have decided to use Solr as a search engine for product search and suggestions. In addition, I'm thinking to replace Solr by Elasticsearch once explored/reviewed enough about Elasticsearch.
Host: As of now, my plan to complete the application with decent features first and deploy it in a free hosting environment like Docker and Heroku and then once it is stable then I have planned to use the AWS products Amazon S3, EC2, Amazon RDS and Amazon Route 53. I'm not sure about Microsoft Azure that what is the specialty in it than Heroku and Amazon EC2 Container Service. Anyhow, I will do explore these once again and pick the best suite one for my requirement once I reached this level.
Build and Repositories: I have decided to choose Apache Maven and Git as these are my favorites and also so popular on respectively build and repositories.
Additional Utilities :) - I would like to choose Codacy for code review as their Startup plan will be very helpful to this application. I'm already experienced with Google CheckStyle and SonarQube even I'm looking something on Codacy.
Happy Coding! Suggestions are welcome! :)
Thanks, Ganesa
We are hardcore Kubernetes users and contributors. We loved the automation it provides. However, as our team grew and added more clusters and microservices, capacity and resources management becomes a massive pain to us. We started suffering from a lot of outages and unexpected behavior as we promote our code from dev to production environments. Luckily we were working on our AI-powered tools to understand different dependencies, predict usage, and calculate the right resources and configurations that should be applied to our infrastructure and microservices. We dogfooded our agent (http://github.com/magalixcorp/magalix-agent) and were able to stabilize as the #autopilot continuously recovered any miscalculations we made or because of unexpected changes in workloads. We are open sourcing our agent in a few days. Check it out and let us know what you think! We run workloads on Microsoft Azure Google Kubernetes Engine and Amazon EC2 and we're all about Go and Python!
Kubernetes
- Leading docker container management solution166
- Simple and powerful129
- Open source107
- Backed by google76
- The right abstractions58
- Scale services25
- Replication controller20
- Permission managment11
- Supports autoscaling9
- Simple8
- Cheap8
- Self-healing6
- Open, powerful, stable5
- Reliable5
- No cloud platform lock-in5
- Promotes modern/good infrascture practice5
- Scalable4
- Quick cloud setup4
- Custom and extensibility3
- Captain of Container Ship3
- Cloud Agnostic3
- Backed by Red Hat3
- Runs on azure3
- A self healing environment with rich metadata3
- Everything of CaaS2
- Gke2
- Golang2
- Easy setup2
- Expandable2
- Sfg2
- Steep learning curve16
- Poor workflow for development15
- Orchestrates only infrastructure8
- High resource requirements for on-prem clusters4
- Too heavy for simple systems2
- Additional vendor lock-in (Docker)1
- More moving parts to secure1
- Additional Technology Overhead1
related Kubernetes posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.
Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.
After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...
NGINX
- High-performance http server1.4K
- Performance894
- Easy to configure730
- Open source607
- Load balancer530
- Free289
- Scalability288
- Web server226
- Simplicity175
- Easy setup136
- Content caching30
- Web Accelerator21
- Capability15
- Fast14
- High-latency12
- Predictability12
- Reverse Proxy8
- Supports http/27
- The best of them7
- Great Community5
- Lots of Modules5
- Enterprise version5
- High perfomance proxy server4
- Embedded Lua scripting3
- Streaming media delivery3
- Streaming media3
- Reversy Proxy3
- Blash2
- GRPC-Web2
- Lightweight2
- Fast and easy to set up2
- Slim2
- saltstack2
- Virtual hosting1
- Narrow focus. Easy to configure. Fast1
- Along with Redis Cache its the Most superior1
- Ingress controller1
- Advanced features require subscription10
related NGINX posts
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
We chose AWS because, at the time, it was really the only cloud provider to choose from.
We tend to use their basic building blocks (EC2, ELB, Amazon S3, Amazon RDS) rather than vendor specific components like databases and queuing. We deliberately decided to do this to ensure we could provide multi-cloud support or potentially move to another cloud provider if the offering was better for our customers.
We’ve utilized c3.large nodes for both the Node.js deployment and then for the .NET Core deployment. Both sit as backends behind an nginx instance and are managed using scaling groups in Amazon EC2 sitting behind a standard AWS Elastic Load Balancing (ELB).
While we’re satisfied with AWS, we do review our decision each year and have looked at Azure and Google Cloud offerings.
#CloudHosting #WebServers #CloudStorage #LoadBalancerReverseProxy
Apache HTTP Server
- Web server479
- Most widely-used web server305
- Virtual hosting217
- Fast148
- Ssl support138
- Since 199644
- Asynchronous28
- Robust5
- Proven over many years4
- Mature2
- Perfomance2
- Perfect Support1
- Many available modules0
- Many available modules0
- Hard to set up4
related Apache HTTP Server posts
When I joined NYT there was already broad dissatisfaction with the LAMP (Linux Apache HTTP Server MySQL PHP) Stack and the front end framework, in particular. So, I wasn't passing judgment on it. I mean, LAMP's fine, you can do good work in LAMP. It's a little dated at this point, but it's not ... I didn't want to rip it out for its own sake, but everyone else was like, "We don't like this, it's really inflexible." And I remember from being outside the company when that was called MIT FIVE when it had launched. And been observing it from the outside, and I was like, you guys took so long to do that and you did it so carefully, and yet you're not happy with your decisions. Why is that? That was more the impetus. If we're going to do this again, how are we going to do it in a way that we're gonna get a better result?
So we're moving quickly away from LAMP, I would say. So, right now, the new front end is React based and using Apollo. And we've been in a long, protracted, gradual rollout of the core experiences.
React is now talking to GraphQL as a primary API. There's a Node.js back end, to the front end, which is mainly for server-side rendering, as well.
Behind there, the main repository for the GraphQL server is a big table repository, that we call Bodega because it's a convenience store. And that reads off of a Kafka pipeline.
We've been happy with nginx as part of our stack. As an open source web application that folks install on-premise, the configuration system for the webserver is pretty important to us. I have a few complaints (e.g. the configuration syntax for conditionals is a pain), but overall we've found it pretty easy to build a configurable set of options (see link) for how to run Zulip on nginx, both directly and with a remote reverse proxy in front of it, with a minimum of code duplication.
Certainly I've been a lot happier with it than I was working with Apache HTTP Server in past projects.