What is Amazon EC2?
Who uses Amazon EC2?
Amazon EC2 Integrations
Here are some stack decisions, common use cases and reviews by companies and developers who chose Amazon EC2 in their tech stack.
Our base infrastructure is composed of Debian based servers running in Amazon EC2 , asset storage with Amazon S3 , and Amazon RDS for Aurora and Redis under Amazon ElastiCache for data storage.
We are starting to work in automated provisioning and management with Terraform.
To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.
Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.
We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.
Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.
Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.
#BigData #AWS #DataScience #DataEngineering
For our Compute services, we decided to use AWS Lambda as it is perfect for quick executions (perfect for a bot), is serverless, and is required by Amazon Lex, which we will use as the framework for our bot. We chose Amazon Lex as it integrates well with other #AWS services and uses the same technology as Alexa. This will give customers the ability to purchase licenses through their Alexa device. We chose Amazon DynamoDB to store customer information as it is a noSQL database, has high performance, and highly available. If we decide to train our own models for license recommendation we will either use Amazon SageMaker or Amazon EC2 with AWS Elastic Load Balancing (ELB) and AWS ASG as they are ideal for model training and inference.
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
We would like to detect unusual config changes that can potentially cause production outage.
Such as, SecurityGroup new allow/deny rule, AuthZ policy change, Secret key/certificate rotation, IP subnet add/drop. The problem is the source of all of these activities is different, i.e., AWS IAM, Amazon EC2, internal prod services, envoy sidecar, etc.
Which of the technology would be best suitable to detect only IMP events (not all activity) from various sources all workload running on AWS and also Splunk Cloud?
We need to perform ETL from several databases into a data warehouse or data lake. We want to
- keep raw and transformed data available to users to draft their own queries efficiently
- give users the ability to give custom permissions and SSO
- move between open-source on-premises development and cloud-based production environments
We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.
Blog Posts
Amazon EC2's Features
- Elastic – Amazon EC2 enables you to increase or decrease capacity within minutes, not hours or days. You can commission one, hundreds or even thousands of server instances simultaneously.
- Completely Controlled – You have complete control of your instances. You have root access to each one, and you can interact with them as you would any machine.
- Flexible – You have the choice of multiple instance types, operating systems, and software packages. Amazon EC2 allows you to select a configuration of memory, CPU, instance storage, and the boot partition size that is optimal for your choice of operating system and application.
- Designed for use with other Amazon Web Services – Amazon EC2 works in conjunction with Amazon Simple Storage Service (Amazon S3), Amazon Relational Database Service (Amazon RDS), Amazon SimpleDB and Amazon Simple Queue Service (Amazon SQS) to provide a complete solution for computing, query processing and storage across a wide range of applications.
- Reliable – Amazon EC2 offers a highly reliable environment where replacement instances can be rapidly and predictably commissioned. The Amazon EC2 Service Level Agreement commitment is 99.95% availability for each Amazon EC2 Region.
- Secure – Amazon EC2 works in conjunction with Amazon VPC to provide security and robust networking functionality for your compute resources.
- Inexpensive – Amazon EC2 passes on to you the financial benefits of Amazon’s scale. You pay a very low rate for the compute capacity you actually consume.
- Easy to Start – Quickly get started with Amazon EC2 by visiting AWS Marketplace to choose preconfigured software on Amazon Machine Images (AMIs). You can quickly deploy this software to EC2 via 1-Click launch or with the EC2 console.