What is Amazon SageMaker and what are its top alternatives?
Top Alternatives to Amazon SageMaker
- Amazon Machine Learning
This new AWS service helps you to use all of that data you’ve been collecting to improve the quality of your decisions. You can build and fine-tune predictive models using large amounts of data, and then use Amazon Machine Learning to make predictions (in batch mode or in real-time) at scale. You can benefit from machine learning even if you don’t have an advanced degree in statistics or the desire to setup, run, and maintain your own processing and storage infrastructure. ...
- Databricks
Databricks Unified Analytics Platform, from the original creators of Apache Spark™, unifies data science and engineering across the Machine Learning lifecycle from data preparation to experimentation and deployment of ML applications. ...
- Azure Machine Learning
Azure Machine Learning is a fully-managed cloud service that enables data scientists and developers to efficiently embed predictive analytics into their applications, helping organizations use massive data sets and bring all the benefits of the cloud to machine learning. ...
- Kubeflow
The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions. ...
- TensorFlow
TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. ...
- IBM Watson
It combines artificial intelligence (AI) and sophisticated analytical software for optimal performance as a "question answering" machine. ...
- H2O
H2O.ai is the maker behind H2O, the leading open source machine learning platform for smarter applications and data products. H2O operationalizes data science by developing and deploying algorithms and models for R, Python and the Sparkling Water API for Spark. ...
- Algorithms.io
Build And Run Predictive Applications For Streaming Data From Applications, Devices, Machines and Wearables ...
Amazon SageMaker alternatives & related posts
Amazon Machine Learning
related Amazon Machine Learning posts
Which #IaaS / #PaaS to chose? Not all #Cloud providers are created equal. As you start to use one or the other, you'll build around very specific services that don't have their equivalent elsewhere.
Back in 2014/2015, this decision I made for SmartZip was a no-brainer and #AWS won. AWS has been a leader, and over the years demonstrated their capacity to innovate, and reducing toil. Like no other.
Year after year, this kept on being confirmed, as they rolled out new (managed) services, got into Serverless with AWS Lambda / FaaS And allowed domains such as #AI / #MachineLearning to be put into the hands of every developers thanks to Amazon Machine Learning or Amazon SageMaker for instance.
Should you compare with #GCP for instance, it's not quite there yet. Building around these managed services, #AWS allowed me to get my developers on a whole new level. Where they know what's under the hood. Where they know they have these services available and can build around them. Where they care and are responsible for operations and security and deployment of what they've worked on.
- Best Performances on large datasets1
- True lakehouse architecture1
- Scalability1
- Databricks doesn't get access to your data1
- Usage Based Billing1
- Security1
- Data stays in your cloud account1
- Multicloud1
related Databricks posts
From my point of view, both OpenRefine and Apache Hive serve completely different purposes. OpenRefine is intended for interactive cleaning of messy data locally. You could work with their libraries to use some of OpenRefine features as part of your data pipeline (there are pointers in FAQ), but OpenRefine in general is intended for a single-user local operation.
I can't recommend a particular alternative without better understanding of your use case. But if you are looking for an interactive tool to work with big data at scale, take a look at notebook environments like Jupyter, Databricks, or Deepnote. If you are building a data processing pipeline, consider also Apache Spark.
Edit: Fixed references from Hadoop to Hive, which is actually closer to Spark.
related Azure Machine Learning posts
- System designer9
- Google backed3
- Customisation3
- Kfp dsl3
related Kubeflow posts
Can you please advise which one to choose FastText Or Gensim, in terms of:
- Operability with ML Ops tools such as MLflow, Kubeflow, etc.
- Performance
- Customization of Intermediate steps
- FastText and Gensim both have the same underlying libraries
- Use cases each one tries to solve
- Unsupervised Vs Supervised dimensions
- Ease of Use.
Please mention any other points that I may have missed here.
Amazon SageMaker constricts the use of their own mxnet package and does not offer a strong Kubernetes backbone. At the same time, Kubeflow is still quite buggy and cumbersome to use. Which tool is a better pick for MLOps pipelines (both from the perspective of scalability and depth)?
- High Performance32
- Connect Research and Production19
- Deep Flexibility16
- Auto-Differentiation12
- True Portability11
- Easy to use6
- High level abstraction5
- Powerful5
- Is orange2
- Hard9
- Hard to debug6
- Documentation not very helpful2
related TensorFlow posts
Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:
At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.
TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details—for instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA’s CUDA toolkit.
Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo’s deep learning toolkit which makes it easier to start—and speed up—distributed deep learning projects with TensorFlow:
(Direct GitHub repo: https://github.com/uber/horovod)
In mid-2015, Uber began exploring ways to scale ML across the organization, avoiding ML anti-patterns while standardizing workflows and tools. This effort led to Michelangelo.
Michelangelo consists of a mix of open source systems and components built in-house. The primary open sourced components used are HDFS, Spark, Samza, Cassandra, MLLib, XGBoost, and TensorFlow.
!
IBM Watson
- Api4
- Prebuilt front-end GUI1
- Intent auto-generation1
- Custom webhooks1
- Disambiguation1
- Multi-lingual1
related IBM Watson posts
- Highly customizable2
- Very fast and powerful2
- Auto ML is amazing2
- Super easy to use2
- Not very popular1