What is Azure Machine Learning and what are its top alternatives?
Top Alternatives to Azure Machine Learning
- Python
Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best. ...
- Azure Databricks
Accelerate big data analytics and artificial intelligence (AI) solutions with Azure Databricks, a fast, easy and collaborative Apache Spark–based analytics service. ...
- Amazon SageMaker
A fully-managed service that enables developers and data scientists to quickly and easily build, train, and deploy machine learning models at any scale. ...
- Amazon Machine Learning
This new AWS service helps you to use all of that data you’ve been collecting to improve the quality of your decisions. You can build and fine-tune predictive models using large amounts of data, and then use Amazon Machine Learning to make predictions (in batch mode or in real-time) at scale. You can benefit from machine learning even if you don’t have an advanced degree in statistics or the desire to setup, run, and maintain your own processing and storage infrastructure. ...
- Databricks
Databricks Unified Analytics Platform, from the original creators of Apache Spark™, unifies data science and engineering across the Machine Learning lifecycle from data preparation to experimentation and deployment of ML applications. ...
- MLflow
MLflow is an open source platform for managing the end-to-end machine learning lifecycle. ...
- TensorFlow
TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. ...
- IBM Watson
It combines artificial intelligence (AI) and sophisticated analytical software for optimal performance as a "question answering" machine. ...
Azure Machine Learning alternatives & related posts
Python
- Great libraries1.2K
- Readable code948
- Beautiful code835
- Rapid development780
- Large community682
- Open source426
- Elegant385
- Great community278
- Object oriented268
- Dynamic typing214
- Great standard library75
- Very fast56
- Functional programming51
- Scientific computing43
- Easy to learn43
- Great documentation33
- Matlab alternative26
- Productivity25
- Easy to read25
- Simple is better than complex21
- It's the way I think18
- Imperative17
- Free15
- Very programmer and non-programmer friendly15
- Powerful14
- Machine learning support14
- Powerfull language14
- Fast and simple13
- Scripting12
- Explicit is better than implicit9
- Clear and easy and powerfull8
- Ease of development8
- Unlimited power8
- Import antigravity7
- It's lean and fun to code6
- Print "life is short, use python"6
- Python has great libraries for data processing5
- Fast coding and good for competitions5
- There should be one-- and preferably only one --obvious5
- High Documented language5
- I love snakes5
- Although practicality beats purity5
- Flat is better than nested5
- Great for tooling5
- Readability counts4
- Rapid Prototyping4
- Web scraping3
- Plotting3
- Multiple Inheritence3
- Complex is better than complicated3
- Beautiful is better than ugly3
- Now is better than never3
- Lists, tuples, dictionaries3
- Socially engaged community3
- Great for analytics3
- CG industry needs3
- Generators2
- Simple and easy to learn2
- Import this2
- No cruft2
- Easy to learn and use2
- List comprehensions2
- Pip install everything2
- Special cases aren't special enough to break the rules2
- If the implementation is hard to explain, it's a bad id2
- If the implementation is easy to explain, it may be a g2
- Easy to setup and run smooth2
- Many types of collections2
- Flexible and easy1
- Powerful language for AI1
- Shitty1
- It is Very easy , simple and will you be love programmi1
- Batteries included1
- Can understand easily who are new to programming1
- Should START with this but not STICK with This1
- A-to-Z1
- Only one way to do it1
- Because of Netflix1
- Better outcome1
- Good for hacking1
- Powerful0
- Still divided between python 2 and python 351
- Performance impact28
- Poor syntax for anonymous functions26
- GIL21
- Package management is a mess19
- Too imperative-oriented14
- Hard to understand12
- Dynamic typing12
- Very slow11
- Not everything is expression8
- Indentations matter a lot7
- Explicit self parameter in methods7
- Incredibly slow7
- Requires C functions for dynamic modules6
- Poor DSL capabilities6
- No anonymous functions6
- Official documentation is unclear.5
- The "lisp style" whitespaces5
- Fake object-oriented programming5
- Hard to obfuscate5
- Threading5
- Circular import4
- The benevolent-dictator-for-life quit4
- Lack of Syntax Sugar leads to "the pyramid of doom"4
- Not suitable for autocomplete4
- Meta classes2
- Training wheels (forced indentation)1
related Python posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Winds 2.0 is an open source Podcast/RSS reader developed by Stream with a core goal to enable a wide range of developers to contribute.
We chose JavaScript because nearly every developer knows or can, at the very least, read JavaScript. With ES6 and Node.js v10.x.x, it’s become a very capable language. Async/Await is powerful and easy to use (Async/Await vs Promises). Babel allows us to experiment with next-generation JavaScript (features that are not in the official JavaScript spec yet). Yarn allows us to consistently install packages quickly (and is filled with tons of new tricks)
We’re using JavaScript for everything – both front and backend. Most of our team is experienced with Go and Python, so Node was not an obvious choice for this app.
Sure... there will be haters who refuse to acknowledge that there is anything remotely positive about JavaScript (there are even rants on Hacker News about Node.js); however, without writing completely in JavaScript, we would not have seen the results we did.
#FrameworksFullStack #Languages
related Azure Databricks posts
related Amazon SageMaker posts
Amazon SageMaker constricts the use of their own mxnet package and does not offer a strong Kubernetes backbone. At the same time, Kubeflow is still quite buggy and cumbersome to use. Which tool is a better pick for MLOps pipelines (both from the perspective of scalability and depth)?
Which #IaaS / #PaaS to chose? Not all #Cloud providers are created equal. As you start to use one or the other, you'll build around very specific services that don't have their equivalent elsewhere.
Back in 2014/2015, this decision I made for SmartZip was a no-brainer and #AWS won. AWS has been a leader, and over the years demonstrated their capacity to innovate, and reducing toil. Like no other.
Year after year, this kept on being confirmed, as they rolled out new (managed) services, got into Serverless with AWS Lambda / FaaS And allowed domains such as #AI / #MachineLearning to be put into the hands of every developers thanks to Amazon Machine Learning or Amazon SageMaker for instance.
Should you compare with #GCP for instance, it's not quite there yet. Building around these managed services, #AWS allowed me to get my developers on a whole new level. Where they know what's under the hood. Where they know they have these services available and can build around them. Where they care and are responsible for operations and security and deployment of what they've worked on.
Amazon Machine Learning
related Amazon Machine Learning posts
Which #IaaS / #PaaS to chose? Not all #Cloud providers are created equal. As you start to use one or the other, you'll build around very specific services that don't have their equivalent elsewhere.
Back in 2014/2015, this decision I made for SmartZip was a no-brainer and #AWS won. AWS has been a leader, and over the years demonstrated their capacity to innovate, and reducing toil. Like no other.
Year after year, this kept on being confirmed, as they rolled out new (managed) services, got into Serverless with AWS Lambda / FaaS And allowed domains such as #AI / #MachineLearning to be put into the hands of every developers thanks to Amazon Machine Learning or Amazon SageMaker for instance.
Should you compare with #GCP for instance, it's not quite there yet. Building around these managed services, #AWS allowed me to get my developers on a whole new level. Where they know what's under the hood. Where they know they have these services available and can build around them. Where they care and are responsible for operations and security and deployment of what they've worked on.
- Best Performances on large datasets1
- True lakehouse architecture1
- Scalability1
- Databricks doesn't get access to your data1
- Usage Based Billing1
- Security1
- Data stays in your cloud account1
- Multicloud1
related Databricks posts
From my point of view, both OpenRefine and Apache Hive serve completely different purposes. OpenRefine is intended for interactive cleaning of messy data locally. You could work with their libraries to use some of OpenRefine features as part of your data pipeline (there are pointers in FAQ), but OpenRefine in general is intended for a single-user local operation.
I can't recommend a particular alternative without better understanding of your use case. But if you are looking for an interactive tool to work with big data at scale, take a look at notebook environments like Jupyter, Databricks, or Deepnote. If you are building a data processing pipeline, consider also Apache Spark.
Edit: Fixed references from Hadoop to Hive, which is actually closer to Spark.
- Code First5
- Simplified Logging4
related MLflow posts
I already use DVC to keep track and store my datasets in my machine learning pipeline. I have also started to use MLflow to keep track of my experiments. However, I still don't know whether to use DVC for my model files or I use the MLflow artifact store for this purpose. Or maybe these two serve different purposes, and it may be good to do both! Can anyone help, please?
Can you please advise which one to choose FastText Or Gensim, in terms of:
- Operability with ML Ops tools such as MLflow, Kubeflow, etc.
- Performance
- Customization of Intermediate steps
- FastText and Gensim both have the same underlying libraries
- Use cases each one tries to solve
- Unsupervised Vs Supervised dimensions
- Ease of Use.
Please mention any other points that I may have missed here.
- High Performance32
- Connect Research and Production19
- Deep Flexibility16
- Auto-Differentiation12
- True Portability11
- Easy to use6
- High level abstraction5
- Powerful5
- Is orange2
- Hard9
- Hard to debug6
- Documentation not very helpful2
related TensorFlow posts
Why we built an open source, distributed training framework for TensorFlow , Keras , and PyTorch:
At Uber, we apply deep learning across our business; from self-driving research to trip forecasting and fraud prevention, deep learning enables our engineers and data scientists to create better experiences for our users.
TensorFlow has become a preferred deep learning library at Uber for a variety of reasons. To start, the framework is one of the most widely used open source frameworks for deep learning, which makes it easy to onboard new users. It also combines high performance with an ability to tinker with low-level model details—for instance, we can use both high-level APIs, such as Keras, and implement our own custom operators using NVIDIA’s CUDA toolkit.
Uber has introduced Michelangelo (https://eng.uber.com/michelangelo/), an internal ML-as-a-service platform that democratizes machine learning and makes it easy to build and deploy these systems at scale. In this article, we pull back the curtain on Horovod, an open source component of Michelangelo’s deep learning toolkit which makes it easier to start—and speed up—distributed deep learning projects with TensorFlow:
(Direct GitHub repo: https://github.com/uber/horovod)
In mid-2015, Uber began exploring ways to scale ML across the organization, avoiding ML anti-patterns while standardizing workflows and tools. This effort led to Michelangelo.
Michelangelo consists of a mix of open source systems and components built in-house. The primary open sourced components used are HDFS, Spark, Samza, Cassandra, MLLib, XGBoost, and TensorFlow.
!
IBM Watson
- Api4
- Prebuilt front-end GUI1
- Intent auto-generation1
- Custom webhooks1
- Disambiguation1
- Multi-lingual1