Need advice about which tool to choose?Ask the StackShare community!

Mosquitto

139
306
+ 1
14
RabbitMQ

21.3K
18.7K
+ 1
557
Add tool

Mosquitto vs RabbitMQ: What are the differences?

Both Mosquitto and RabbitMQ are messaging brokers that facilitate communication between different components in a system. Let's explore the key differences between Mosquitto and RabbitMQ.

  1. Protocol Support: Mosquitto primarily supports the MQTT (Message Queuing Telemetry Transport) protocol, which is a lightweight publish-subscribe messaging protocol. On the other hand, RabbitMQ supports multiple messaging protocols, including AMQP (Advanced Message Queuing Protocol), MQTT, and STOMP (Simple Text Oriented Messaging Protocol). This gives RabbitMQ greater flexibility in integrating with a wider range of applications and clients.

  2. Message Routing: Mosquitto uses a simple publish-subscribe model, where messages are published to specific topics and subscribers receive messages from subscribed topics. On the other hand, RabbitMQ supports more advanced routing features, such as direct exchange, topic exchange, fanout exchange, and headers exchange. This allows RabbitMQ to handle more complex message routing scenarios and enables flexible message distribution based on various criteria.

  3. Concurrency Handling: Mosquitto is designed to be lightweight and efficient, making it suitable for low-resource environments. It can handle a large number of concurrent connections using a single thread, which simplifies deployment and reduces resource usage. In contrast, RabbitMQ is built on Erlang and utilizes a multi-threaded architecture, making it capable of handling high concurrency scenarios. It achieves high scalability and fault-tolerance through its shared-nothing architecture.

  4. Message Persistence: Mosquitto does not provide built-in message persistence. Once a message is published, it is delivered to currently connected clients. If a client is not connected, it will miss the message. In contrast, RabbitMQ provides durable message storage, ensuring that messages are not lost even if the broker or an individual client is temporarily offline. This makes RabbitMQ suitable for applications that require reliable message delivery.

  5. Advanced Features: RabbitMQ offers a wider range of advanced features compared to Mosquitto. These include message acknowledgments, message priority, dead-letter exchange, message TTL (Time-to-Live), and message compression. These features allow developers to implement more sophisticated messaging patterns and enhance the reliability, performance, and flexibility of the messaging system.

  6. Community and Ecosystem: Both Mosquitto and RabbitMQ have active communities and support from their respective organizations. However, RabbitMQ has a larger and more mature ecosystem with extensive documentation, plugins, and integrations, making it easier to find resources and solutions for various use cases. Mosquitto, being a lightweight MQTT broker, is more focused on simplicity and efficiency, making it an ideal choice for resource-constrained devices and IoT applications.

In summary, Mosquitto and RabbitMQ differ in terms of protocol support, message routing capabilities, concurrency handling, message persistence, advanced features, and community/ecosystem. These differences make them suitable for different scenarios, with Mosquitto excelling in lightweight MQTT deployments and RabbitMQ providing more advanced messaging features and scalability options.

Advice on Mosquitto and RabbitMQ
André Almeida
Technology Manager at GS1 Portugal - Codipor · | 5 upvotes · 437.8K views
Needs advice
on
Azure Service BusAzure Service Bus
and
RabbitMQRabbitMQ

Hello dear developers, our company is starting a new project for a new Web App, and we are currently designing the Architecture (we will be using .NET Core). We want to embark on something new, so we are thinking about migrating from a monolithic perspective to a microservices perspective. We wish to containerize those microservices and make them independent from each other. Is it the best way for microservices to communicate with each other via ESB, or is there a new way of doing this? Maybe complementing with an API Gateway? Can you recommend something else different than the two tools I provided?

We want something good for Cost/Benefit; performance should be high too (but not the primary constraint).

Thank you very much in advance :)

See more
Replies (2)

A Pro of Azure Service Bus is reliability and persistence: you can send message when receiver is offline; receiver can read it when it back online. A Cons is costs and message size. You can consider also SignalR

See more
Recommends

There are many different messaging frameworks available for IPC use. It's not really a question of how "new" the technology is, but what you need it to do. Azure Service Bus can be a great service to use, but it can also take a lot of effort to administrate and maintain that can make it costly to use unless you need the more advanced features it offers for routing, sequencing, delivery, etc. I would recommend checking out this link to get a basic idea of different messaging architectures. These only cover Azure services, but there are many other solutions that use similar architectural models.

https://docs.microsoft.com/en-us/azure/event-grid/compare-messaging-services

See more
Needs advice
on
KafkaKafkaRabbitMQRabbitMQ
and
RedisRedis

We are going to develop a microservices-based application. It consists of AngularJS, ASP.NET Core, and MSSQL.

We have 3 types of microservices. Emailservice, Filemanagementservice, Filevalidationservice

I am a beginner in microservices. But I have read about RabbitMQ, but come to know that there are Redis and Kafka also in the market. So, I want to know which is best.

See more
Replies (4)
Maheedhar Aluri
Recommends
on
KafkaKafka

Kafka is an Enterprise Messaging Framework whereas Redis is an Enterprise Cache Broker, in-memory database and high performance database.Both are having their own advantages, but they are different in usage and implementation. Now if you are creating microservices check the user consumption volumes, its generating logs, scalability, systems to be integrated and so on. I feel for your scenario initially you can go with KAFKA bu as the throughput, consumption and other factors are scaling then gradually you can add Redis accordingly.

See more
Recommends
on
AngularAngular

I first recommend that you choose Angular over AngularJS if you are starting something new. AngularJs is no longer getting enhancements, but perhaps you meant Angular. Regarding microservices, I recommend considering microservices when you have different development teams for each service that may want to use different programming languages and backend data stores. If it is all the same team, same code language, and same data store I would not use microservices. I might use a message queue, in which case RabbitMQ is a good one. But you may also be able to simply write your own in which you write a record in a table in MSSQL and one of your services reads the record from the table and processes it. The most challenging part of doing it yourself is writing a service that does a good job of reading the queue without reading the same message multiple times or missing a message; and that is where RabbitMQ can help.

See more
Amit Mor
Software Architect at Payoneer · | 3 upvotes · 812.2K views
Recommends
on
KafkaKafka

I think something is missing here and you should consider answering it to yourself. You are building a couple of services. Why are you considering event-sourcing architecture using Message Brokers such as the above? Won't a simple REST service based arch suffice? Read about CQRS and the problems it entails (state vs command impedance for example). Do you need Pub/Sub or Push/Pull? Is queuing of messages enough or would you need querying or filtering of messages before consumption? Also, someone would have to manage these brokers (unless using managed, cloud provider based solution), automate their deployment, someone would need to take care of backups, clustering if needed, disaster recovery, etc. I have a good past experience in terms of manageability/devops of the above options with Kafka and Redis, not so much with RabbitMQ. Both are very performant. But also note that Redis is not a pure message broker (at time of writing) but more of a general purpose in-memory key-value store. Kafka nowadays is much more than a distributed message broker. Long story short. In my taste, you should go with a minialistic approach and try to avoid either of them if you can, especially if your architecture does not fall nicely into event sourcing. If not I'd examine Kafka. If you need more capabilities than I'd consider Redis and use it for all sorts of other things such as a cache.

See more
Recommends
on
NATSNATS

We found that the CNCF landscape is a good advisor when working going into the cloud / microservices space: https://landscape.cncf.io/fullscreen=yes. When choosing a technology one important criteria to me is if it is cloud native or not. Neither Redis, RabbitMQ nor Kafka is cloud native. The try to adapt but will be replaced eventually with technologies that are cloud native.

We have gone with NATS and have never looked back. We haven't spend a single minute on server maintainance in the last year and the setup of a cluster is way too easy. With the new features NATS incorporates now (and the ones still on the roadmap) it is already and will be sooo much mure than Redis, RabbitMQ and Kafka are. It can replace service discovery, load balancing, global multiclusters and failover, etc, etc.

Your thought might be: But I don't need all of that! Well, at the same time it is much more leightweight than Redis, RabbitMQ and especially Kafka.

See more
Needs advice
on
KafkaKafka
and
RabbitMQRabbitMQ

Our backend application is sending some external messages to a third party application at the end of each backend (CRUD) API call (from UI) and these external messages take too much extra time (message building, processing, then sent to the third party and log success/failure), UI application has no concern to these extra third party messages.

So currently we are sending these third party messages by creating a new child thread at end of each REST API call so UI application doesn't wait for these extra third party API calls.

I want to integrate Apache Kafka for these extra third party API calls, so I can also retry on failover third party API calls in a queue(currently third party messages are sending from multiple threads at the same time which uses too much processing and resources) and logging, etc.

Question 1: Is this a use case of a message broker?

Question 2: If it is then Kafka vs RabitMQ which is the better?

See more
Replies (4)
Tarun Batra
Senior Software Developer at Okta · | 7 upvotes · 762.1K views
Recommends
on
RabbitMQRabbitMQ

RabbitMQ is great for queuing and retrying. You can send the requests to your backend which will further queue these requests in RabbitMQ (or Kafka, too). The consumer on the other end can take care of processing . For a detailed analysis, check this blog about choosing between Kafka and RabbitMQ.

See more
Trevor Rydalch
Software Engineer at InsideSales.com · | 6 upvotes · 761.9K views
Recommends
on
RabbitMQRabbitMQ

Well, first off, it's good practice to do as little non-UI work on the foreground thread as possible, regardless of whether the requests take a long time. You don't want the UI thread blocked.

This sounds like a good use case for RabbitMQ. Primarily because you don't need each message processed by more than one consumer. If you wanted to process a single message more than once (say for different purposes), then Apache Kafka would be a much better fit as you can have multiple consumer groups consuming from the same topics independently.

Have your API publish messages containing the data necessary for the third-party request to a Rabbit queue and have consumers reading off there. If it fails, you can either retry immediately, or publish to a deadletter queue where you can reprocess them whenever you want (shovel them back into the regular queue).

See more
Recommends
on
RabbitMQRabbitMQ

In my opinion RabbitMQ fits better in your case because you don’t have order in queue. You can process your messages in any order. You don’t need to store the data what you sent. Kafka is a persistent storage like the blockchain. RabbitMQ is a message broker. Kafka is not a good solution for the system with confirmations of the messages delivery.

See more
Guillaume Maka
Full Stack Web Developer · | 2 upvotes · 761.1K views
Recommends
on
RabbitMQRabbitMQ

As far as I understand, Kafka is a like a persisted event state manager where you can plugin various source of data and transform/query them as event via a stream API. Regarding your use case I will consider using RabbitMQ if your intent is to implement service inter-communication kind of thing. RabbitMQ is a good choice for one-one publisher/subscriber (or consumer) and I think you can also have multiple consumers by configuring a fanout exchange. RabbitMQ provide also message retries, message cancellation, durable queue, message requeue, message ACK....

See more
Needs advice
on
KafkaKafkaRabbitMQRabbitMQ
and
RedisRedis

Hello! [Client sends live video frames -> Server computes and responds the result] Web clients send video frames from their webcam then on the back we need to run them through some algorithm and send the result back as a response. Since everything will need to work in a live mode, we want something fast and also suitable for our case (as everyone needs). Currently, we are considering RabbitMQ for the purpose, but recently I have noticed that there is Redis and Kafka too. Could you please help us choose among them or anything more suitable beyond these guys. I think something similar to our product would be people using their webcam to get Snapchat masks on their faces, and the calculated face points are responded on from the server, then the client-side draw the mask on the user's face. I hope this helps. Thank you!

See more
Replies (3)
Jordi Martínez
Senior software architect at Bootloader · | 3 upvotes · 711.2K views
Recommends
on
KafkaKafka

For your use case, the tool that fits more is definitely Kafka. RabbitMQ was not invented to handle data streams, but messages. Plenty of them, of course, but individual messages. Redis is an in-memory database, which is what makes it so fast. Redis recently included features to handle data stream, but it cannot best Kafka on this, or at least not yet. Kafka is not also super fast, it also provides lots of features to help create software to handle those streams.

See more
Recommends
on
RabbitMQRabbitMQ

I've used all of them and Kafka is hard to set up and maintain. Mostly is a Java dinosaur that you can set up and. I've used it with Storm but that is another big dinosaur. Redis is mostly for caching. The queue mechanism is not very scalable for multiple processors. Depending on the speed you need to implement on the reliability I would use RabbitMQ. You can store the frames(if they are too big) somewhere else and just have a link to them. Moving data through any of these will increase cost of transportation. With Rabbit, you can always have multiple consumers and check for redundancy. Hope it clears out your thoughts!

See more
Recommends
on
RabbitMQRabbitMQ

For this kind of use case I would recommend either RabbitMQ or Kafka depending on the needs for scaling, redundancy and how you want to design it.

Kafka's true value comes into play when you need to distribute the streaming load over lot's of resources. If you were passing the video frames directly into the queue then you'd probably want to go with Kafka however if you can just pass a pointer to the frames then RabbitMQ should be fine and will be much simpler to run.

Bear in mind too that Kafka is a persistent log, not just a message bus so any data you feed into it is kept available until it expires (which is configurable). This can be useful if you have multiple clients reading from the queue with their own lifecycle but in your case it doesn't sound like that would be necessary. You could also use a RabbitMQ fanout exchange if you need that in the future.

See more
Decisions about Mosquitto and RabbitMQ
Mickael Alliel
DevOps Engineer at Rookout · | 4 upvotes · 452.6K views

In addition to being a lot cheaper, Google Cloud Pub/Sub allowed us to not worry about maintaining any more infrastructure that needed.

We moved from a self-hosted RabbitMQ over to CloudAMQP and decided that since we use GCP anyway, why not try their managed PubSub?

It is one of the better decisions that we made, and we can just focus about building more important stuff!

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Mosquitto
Pros of RabbitMQ
  • 10
    Simple and light
  • 4
    Performance
  • 235
    It's fast and it works with good metrics/monitoring
  • 80
    Ease of configuration
  • 60
    I like the admin interface
  • 52
    Easy to set-up and start with
  • 22
    Durable
  • 19
    Standard protocols
  • 19
    Intuitive work through python
  • 11
    Written primarily in Erlang
  • 9
    Simply superb
  • 7
    Completeness of messaging patterns
  • 4
    Reliable
  • 4
    Scales to 1 million messages per second
  • 3
    Better than most traditional queue based message broker
  • 3
    Distributed
  • 3
    Supports MQTT
  • 3
    Supports AMQP
  • 2
    Clear documentation with different scripting language
  • 2
    Better routing system
  • 2
    Inubit Integration
  • 2
    Great ui
  • 2
    High performance
  • 2
    Reliability
  • 2
    Open-source
  • 2
    Runs on Open Telecom Platform
  • 2
    Clusterable
  • 2
    Delayed messages
  • 1
    Supports Streams
  • 1
    Supports STOMP
  • 1
    Supports JMS

Sign up to add or upvote prosMake informed product decisions

Cons of Mosquitto
Cons of RabbitMQ
    Be the first to leave a con
    • 9
      Too complicated cluster/HA config and management
    • 6
      Needs Erlang runtime. Need ops good with Erlang runtime
    • 5
      Configuration must be done first, not by your code
    • 4
      Slow

    Sign up to add or upvote consMake informed product decisions

    - No public GitHub repository available -

    What is Mosquitto?

    It is lightweight and is suitable for use on all devices from low power single board computers to full servers.. The MQTT protocol provides a lightweight method of carrying out messaging using a publish/subscribe model. This makes it suitable for Internet of Things messaging such as with low power sensors or mobile devices such as phones, embedded computers or microcontrollers.

    What is RabbitMQ?

    RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

    Need advice about which tool to choose?Ask the StackShare community!

    What companies use Mosquitto?
    What companies use RabbitMQ?
    Manage your open source components, licenses, and vulnerabilities
    Learn More

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Mosquitto?
    What tools integrate with RabbitMQ?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    Blog Posts

    GitHubPythonNode.js+47
    55
    72733
    GitGitHubDocker+34
    29
    42668
    JavaScriptGitHubPython+42
    53
    22124
    GitHubPythonSlack+25
    7
    3212
    GitHubPythonDocker+24
    13
    17072
    GitHubMySQLSlack+44
    109
    50744
    What are some alternatives to Mosquitto and RabbitMQ?
    ActiveMQ
    Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.
    Mosca
    A Node.js MQTT broker, which can be used as a Standalone Service or embedded in another Node.js application.
    EMQX
    EMQX is a cloud-native, MQTT-based, IoT messaging platform designed for high reliability and massive scale. Licensed under the Apache Version 2.0, EMQX is 100% compliant with MQTT 5.0 and 3.x standard protocol specifications.
    VerneMQ
    VerneMQ is a distributed MQTT message broker, implemented in Erlang/OTP. It's open source, and Apache 2 licensed. VerneMQ implements the MQTT 3.1, 3.1.1 and 5.0 specifications.
    Kafka
    Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.
    See all alternatives