StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. MongoDB vs Presto

MongoDB vs Presto

OverviewDecisionsComparisonAlternatives

Overview

MongoDB
MongoDB
Stacks96.6K
Followers82.0K
Votes4.1K
GitHub Stars27.7K
Forks5.7K
Presto
Presto
Stacks394
Followers1.0K
Votes66

MongoDB vs Presto: What are the differences?

Introduction

MongoDB and Presto are both popular database technologies that serve different purposes and have distinct features. Below are the key differences between MongoDB and Presto:

  1. Data Model: MongoDB is a document-oriented database that stores data in flexible, JSON-like documents. It allows for dynamic schemas, making it easier to handle evolving data. Presto, on the other hand, is a distributed SQL query engine that works with multiple data sources and supports querying structured data using SQL syntax.

  2. Query Language: MongoDB uses its own query language called the MongoDB Query Language (MQL). It supports a wide range of queries, including CRUD operations, aggregations, and geospatial queries. Presto uses standard SQL for querying data, making it easier for users familiar with SQL to work with the database.

  3. Scalability: MongoDB is known for its horizontal scalability, which means it can handle large amounts of data by distributing it across multiple servers or clusters. It also provides sharding and replication capabilities to ensure high availability and reliability. Presto, on the other hand, is designed for query scalability and can process large volumes of data efficiently by using distributed processing across a cluster of machines.

  4. Data Storage: MongoDB stores data in a binary format called BSON (Binary JSON), which allows for efficient storage and retrieval of data. It also supports a wide range of data types, including arrays, sub-documents, and binary data. Presto does not have its own storage format and relies on external data sources for storage. It can work with various file formats like Parquet, Avro, and CSV.

  5. Data Consistency: MongoDB provides strong consistency by default, which ensures that all reads and writes are immediately consistent. It offers ACID transactions at the document level, allowing for complex operations and ensuring data integrity. Presto, on the other hand, does not provide built-in support for strong consistency or ACID transactions. Instead, it focuses on providing high-performance queries for analytical workloads.

  6. Use Cases: MongoDB is commonly used for applications that require flexible and scalable data storage, such as content management systems, e-commerce platforms, and real-time analytics. Presto is typically used for large-scale data processing and analytics, where speed and query performance are crucial. It is often used in conjunction with data discovery tools and data lakes for querying and analyzing vast amounts of data.

In summary, MongoDB is a document-oriented database with a flexible data model and support for strong consistency and ACID transactions. Presto, on the other hand, is a distributed SQL query engine that excels in processing large volumes of structured data with high performance and query scalability.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on MongoDB, Presto

Ashish
Ashish

Tech Lead, Big Data Platform at Pinterest

Nov 27, 2019

Needs adviceonApache HiveApache HivePrestoPrestoAmazon EC2Amazon EC2

To provide employees with the critical need of interactive querying, we’ve worked with Presto, an open-source distributed SQL query engine, over the years. Operating Presto at Pinterest’s scale has involved resolving quite a few challenges like, supporting deeply nested and huge thrift schemas, slow/ bad worker detection and remediation, auto-scaling cluster, graceful cluster shutdown and impersonation support for ldap authenticator.

Our infrastructure is built on top of Amazon EC2 and we leverage Amazon S3 for storing our data. This separates compute and storage layers, and allows multiple compute clusters to share the S3 data.

We have hundreds of petabytes of data and tens of thousands of Apache Hive tables. Our Presto clusters are comprised of a fleet of 450 r4.8xl EC2 instances. Presto clusters together have over 100 TBs of memory and 14K vcpu cores. Within Pinterest, we have close to more than 1,000 monthly active users (out of total 1,600+ Pinterest employees) using Presto, who run about 400K queries on these clusters per month.

Each query submitted to Presto cluster is logged to a Kafka topic via Singer. Singer is a logging agent built at Pinterest and we talked about it in a previous post. Each query is logged when it is submitted and when it finishes. When a Presto cluster crashes, we will have query submitted events without corresponding query finished events. These events enable us to capture the effect of cluster crashes over time.

Each Presto cluster at Pinterest has workers on a mix of dedicated AWS EC2 instances and Kubernetes pods. Kubernetes platform provides us with the capability to add and remove workers from a Presto cluster very quickly. The best-case latency on bringing up a new worker on Kubernetes is less than a minute. However, when the Kubernetes cluster itself is out of resources and needs to scale up, it can take up to ten minutes. Some other advantages of deploying on Kubernetes platform is that our Presto deployment becomes agnostic of cloud vendor, instance types, OS, etc.

#BigData #AWS #DataScience #DataEngineering

3.72M views3.72M
Comments
George
George

Student

Mar 18, 2020

Needs adviceonPostgreSQLPostgreSQLPythonPythonDjangoDjango

Hello everyone,

Well, I want to build a large-scale project, but I do not know which ORDBMS to choose. The app should handle real-time operations, not chatting, but things like future scheduling or reminders. It should be also really secure, fast and easy to use. And last but not least, should I use them both. I mean PostgreSQL with Python / Django and MongoDB with Node.js? Or would it be better to use PostgreSQL with Node.js?

*The project is going to use React for the front-end and GraphQL is going to be used for the API.

Thank you all. Any answer or advice would be really helpful!

620k views620k
Comments
Ido
Ido

Mar 6, 2020

Decided

My data was inherently hierarchical, but there was not enough content in each level of the hierarchy to justify a relational DB (SQL) with a one-to-many approach. It was also far easier to share data between the frontend (Angular), backend (Node.js) and DB (MongoDB) as they all pass around JSON natively. This allowed me to skip the translation layer from relational to hierarchical. You do need to think about correct indexes in MongoDB, and make sure the objects have finite size. For instance, an object in your DB shouldn't have a property which is an array that grows over time, without limit. In addition, I did use MySQL for other types of data, such as a catalog of products which (a) has a lot of data, (b) flat and not hierarchical, (c) needed very fast queries.

575k views575k
Comments

Detailed Comparison

MongoDB
MongoDB
Presto
Presto

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

Distributed SQL Query Engine for Big Data

Flexible data model, expressive query language, secondary indexes, replication, auto-sharding, in-place updates, aggregation, GridFS
-
Statistics
GitHub Stars
27.7K
GitHub Stars
-
GitHub Forks
5.7K
GitHub Forks
-
Stacks
96.6K
Stacks
394
Followers
82.0K
Followers
1.0K
Votes
4.1K
Votes
66
Pros & Cons
Pros
  • 829
    Document-oriented storage
  • 594
    No sql
  • 554
    Ease of use
  • 465
    Fast
  • 410
    High performance
Cons
  • 6
    Very slowly for connected models that require joins
  • 3
    Not acid compliant
  • 2
    Proprietary query language
Pros
  • 18
    Works directly on files in s3 (no ETL)
  • 13
    Open-source
  • 12
    Join multiple databases
  • 10
    Scalable
  • 7
    Gets ready in minutes
Integrations
No integrations available
PostgreSQL
PostgreSQL
Kafka
Kafka
Redis
Redis
MySQL
MySQL
Hadoop
Hadoop
Microsoft SQL Server
Microsoft SQL Server

What are some alternatives to MongoDB, Presto?

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

InfluxDB

InfluxDB

InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running. InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase