StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Search
  4. Search As A Service
  5. Azure Machine Learning vs Elasticsearch

Azure Machine Learning vs Elasticsearch

OverviewDecisionsComparisonAlternatives

Overview

Elasticsearch
Elasticsearch
Stacks35.5K
Followers27.1K
Votes1.6K
Azure Machine Learning
Azure Machine Learning
Stacks241
Followers373
Votes0

Azure Machine Learning vs Elasticsearch: What are the differences?

Azure Machine Learning and Elasticsearch are both popular tools in the field of data analytics, but they serve distinct purposes and have specific functionalities. Here are the key differences between Azure Machine Learning and Elasticsearch:

1. **Primary Purpose**: Azure Machine Learning is a cloud-based platform that enables data scientists to build, train, and deploy machine learning models, while Elasticsearch is a distributed search and analytics engine designed for storing, searching, and analyzing large volumes of data in real time.

2. **Use Case**: Azure Machine Learning is ideal for developing and operationalizing machine learning models for predictive analytics, whereas Elasticsearch is commonly used for log analysis, full-text search, and other data exploration tasks.

3. **Machine Learning Capabilities**: Azure Machine Learning provides a variety of built-in machine learning algorithms and tools for model evaluation and deployment, whereas Elasticsearch focuses on search and indexing capabilities and does not have native machine learning functionalities.

4. **Scalability and Performance**: Azure Machine Learning allows for scalable model training and deployment on the cloud, with automatic scaling and high-performance computing resources, while Elasticsearch offers horizontal scalability for distributed data storage and search, with real-time indexing and querying capabilities.

5. **Integration**: Azure Machine Learning integrates seamlessly with other Microsoft Azure services and tools for data processing, storage, and visualization, whereas Elasticsearch can be integrated with various data sources and visualization tools through APIs and plugins.

6. **Community and Support**: Azure Machine Learning has a growing community of data scientists and developers with access to Microsoft's support resources, while Elasticsearch has a strong community backing and a wide range of plugins and extensions developed by the open-source community.

In Summary, Azure Machine Learning is focused on machine learning model development and deployment in the cloud, while Elasticsearch specializes in real-time search and analytics for large datasets. Each tool has specific strengths and use cases, making them valuable assets for different data analytics workflows.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Elasticsearch, Azure Machine Learning

Rana Usman
Rana Usman

Chief Technology Officer at TechAvanza

Jun 4, 2020

Needs adviceonFirebaseFirebaseElasticsearchElasticsearchAlgoliaAlgolia

Hey everybody! (1) I am developing an android application. I have data of around 3 million record (less than a TB). I want to save that data in the cloud. Which company provides the best cloud database services that would suit my scenario? It should be secured, long term useable, and provide better services. I decided to use Firebase Realtime database. Should I stick with Firebase or are there any other companies that provide a better service?

(2) I have the functionality of searching data in my app. Same data (less than a TB). Which search solution should I use in this case? I found Elasticsearch and Algolia search. It should be secure and fast. If any other company provides better services than these, please feel free to suggest them.

Thank you!

408k views408k
Comments
André
André

Nov 20, 2020

Needs adviceonElasticsearchElasticsearchAmazon DynamoDBAmazon DynamoDB

Hi, community, I'm planning to build a web service that will perform a text search in a data set off less than 3k well-structured JSON objects containing config data. I'm expecting no more than 20 MB of data. The general traits I need for this search are:

  • Typo tolerant (fuzzy query), so it has to match the entries even though the query does not match 100% with a word on that JSON
  • Allow a strict match mode
  • Perform the search through all the JSON values (it can reach 6 nesting levels)
  • Ignore all Keys of the JSON; I'm interested only in the values.

The only thing I'm researching at the moment is Elasticsearch, and since the rest of the stack is on AWS the Amazon ElasticSearch is my favorite candidate so far. Although, the only knowledge I have on it was fetched from some articles and Q&A that I read here and there. Is ElasticSearch a good path for this project? I'm also considering Amazon DynamoDB (which I also don't know of), but it does not look to cover the requirements of fuzzy-search and ignore the JSON properties. Thank you in advance for your precious advice!

60.3k views60.3k
Comments
Ted
Ted

Computer Science

Dec 19, 2020

Review

I think elasticsearch should be a great fit for that use case. Using the AWS version will make your life easier. With such a small dataset you may also be able to use an in process library for searching and possibly remove the overhead of using a database. I don’t if it fits the bill, but you may also want to look into lucene.

I can tell you that Dynamo DB is definitely not a good fit for your use case. There is no fuzzy matching feature and you would need to have an index for each field you want to search or convert your data into a more searchable format for storing in Dynamo, which is something a full text search tool like elasticsearch is going to do for you.

42.9k views42.9k
Comments

Detailed Comparison

Elasticsearch
Elasticsearch
Azure Machine Learning
Azure Machine Learning

Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).

Azure Machine Learning is a fully-managed cloud service that enables data scientists and developers to efficiently embed predictive analytics into their applications, helping organizations use massive data sets and bring all the benefits of the cloud to machine learning.

Distributed and Highly Available Search Engine;Multi Tenant with Multi Types;Various set of APIs including RESTful;Clients available in many languages including Java, Python, .NET, C#, Groovy, and more;Document oriented;Reliable, Asynchronous Write Behind for long term persistency;(Near) Real Time Search;Built on top of Apache Lucene;Per operation consistency;Inverted indices with finite state transducers for full-text querying;BKD trees for storing numeric and geo data;Column store for analytics;Compatible with Hadoop using the ES-Hadoop connector;Open Source under Apache 2 and Elastic License
Designed for new and experienced users;Proven algorithms from MS Research, Xbox and Bing;First class support for the open source language R;Seamless connection to HDInsight for big data solutions;Deploy models to production in minutes;Pay only for what you use. No hardware or software to buy
Statistics
Stacks
35.5K
Stacks
241
Followers
27.1K
Followers
373
Votes
1.6K
Votes
0
Pros & Cons
Pros
  • 329
    Powerful api
  • 315
    Great search engine
  • 231
    Open source
  • 214
    Restful
  • 200
    Near real-time search
Cons
  • 7
    Resource hungry
  • 6
    Diffecult to get started
  • 5
    Expensive
  • 4
    Hard to keep stable at large scale
No community feedback yet
Integrations
Kibana
Kibana
Beats
Beats
Logstash
Logstash
Microsoft Azure
Microsoft Azure

What are some alternatives to Elasticsearch, Azure Machine Learning?

Algolia

Algolia

Our mission is to make you a search expert. Push data to our API to make it searchable in real time. Build your dream front end with one of our web or mobile UI libraries. Tune relevance and get analytics right from your dashboard.

Typesense

Typesense

It is an open source, typo tolerant search engine that delivers fast and relevant results out-of-the-box. has been built from scratch to offer a delightful, out-of-the-box search experience. From instant search to autosuggest, to faceted search, it has got you covered.

Amazon CloudSearch

Amazon CloudSearch

Amazon CloudSearch enables you to search large collections of data such as web pages, document files, forum posts, or product information. With a few clicks in the AWS Management Console, you can create a search domain, upload the data you want to make searchable to Amazon CloudSearch, and the search service automatically provisions the required technology resources and deploys a highly tuned search index.

Amazon Elasticsearch Service

Amazon Elasticsearch Service

Amazon Elasticsearch Service is a fully managed service that makes it easy for you to deploy, secure, and operate Elasticsearch at scale with zero down time.

Manticore Search

Manticore Search

It is a full-text search engine written in C++ and a fork of Sphinx Search. It's designed to be simple to use, light and fast, while allowing advanced full-text searching. Connectivity is provided via a MySQL compatible protocol or HTTP, making it easy to integrate.

NanoNets

NanoNets

Build a custom machine learning model without expertise or large amount of data. Just go to nanonets, upload images, wait for few minutes and integrate nanonets API to your application.

Azure Search

Azure Search

Azure Search makes it easy to add powerful and sophisticated search capabilities to your website or application. Quickly and easily tune search results and construct rich, fine-tuned ranking models to tie search results to business goals. Reliable throughput and storage provide fast search indexing and querying to support time-sensitive search scenarios.

Swiftype

Swiftype

Swiftype is the easiest way to add great search to your website or mobile application.

MeiliSearch

MeiliSearch

It is a powerful, fast, open-source, easy to use, and deploy search engine. The search and indexation are fully customizable and handles features like typo-tolerance, filters, and synonyms.

Quickwit

Quickwit

It is the next-gen search & analytics engine built for logs. It is designed from the ground up to offer cost-efficiency and high reliability on large data sets. Its benefits are most apparent in multi-tenancy or multi-index settings.

Related Comparisons

Postman
Swagger UI

Postman vs Swagger UI

Mapbox
Google Maps

Google Maps vs Mapbox

Mapbox
Leaflet

Leaflet vs Mapbox vs OpenLayers

Twilio SendGrid
Mailgun

Mailgun vs Mandrill vs SendGrid

Runscope
Postman

Paw vs Postman vs Runscope