Need advice about which tool to choose?Ask the StackShare community!
Amazon Redshift vs Azure Synapse: What are the differences?
Amazon Redshift: Fast, fully managed, petabyte-scale data warehouse service. It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions; Azure Synapse: Analytics service that brings together enterprise data warehousing and Big Data analytics. It is an analytics service that brings together enterprise data warehousing and Big Data analytics. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources—at scale. It brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate BI and machine learning needs.
Amazon Redshift belongs to "Big Data as a Service" category of the tech stack, while Azure Synapse can be primarily classified under "Big Data Tools".
Some of the features offered by Amazon Redshift are:
- Optimized for Data Warehousing- It uses columnar storage, data compression, and zone maps to reduce the amount of IO needed to perform queries. Redshift has a massively parallel processing (MPP) architecture, parallelizing and distributing SQL operations to take advantage of all available resources.
- Scalable- With a few clicks of the AWS Management Console or a simple API call, you can easily scale the number of nodes in your data warehouse up or down as your performance or capacity needs change.
- No Up-Front Costs- You pay only for the resources you provision. You can choose On-Demand pricing with no up-front costs or long-term commitments, or obtain significantly discounted rates with Reserved Instance pricing.
On the other hand, Azure Synapse provides the following key features:
- Complete T-SQL based analytics – Generally Available
- Deeply integrated Apache Spark
- Hybrid data integration
We need to perform ETL from several databases into a data warehouse or data lake. We want to
- keep raw and transformed data available to users to draft their own queries efficiently
- give users the ability to give custom permissions and SSO
- move between open-source on-premises development and cloud-based production environments
We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.
You could also use AWS Lambda and use Cloudwatch event schedule if you know when the function should be triggered. The benefit is that you could use any language and use the respective database client.
But if you orchestrate ETLs then it makes sense to use Apache Airflow. This requires Python knowledge.

Though we have always built something custom, Apache airflow (https://airflow.apache.org/) stood out as a key contender/alternative when it comes to open sources. On the commercial offering, Amazon Redshift combined with Amazon Kinesis (for complex manipulations) is great for BI, though Redshift as such is expensive.
You may want to look into a Data Virtualization product called Conduit. It connects to disparate data sources in AWS, on prem, Azure, GCP, and exposes them as a single unified Spark SQL view to PowerBI (direct query) or Tableau. Allows auto query and caching policies to enhance query speeds and experience. Has a GPU query engine and optimized Spark for fallback. Can be deployed on your AWS VM or on prem, scales up and out. Sounds like the ideal solution to your needs.
Pros of Amazon Redshift
- Data Warehousing37
- Scalable27
- SQL17
- Backed by Amazon14
- Encryption5
- Cheap and reliable1
- Isolation1
- Best Cloud DW Performance1
- Fast columnar storage1
Pros of Azure Synapse
- Security3
- ETL2
- Serverless2