Need advice about which tool to choose?Ask the StackShare community!
Amazon Redshift vs Amazon Redshift Spectrum: What are the differences?
Developers describe Amazon Redshift as "Fast, fully managed, petabyte-scale data warehouse service". Redshift makes it simple and cost-effective to efficiently analyze all your data using your existing business intelligence tools. It is optimized for datasets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions. On the other hand, Amazon Redshift Spectrum is detailed as "Exabyte-Scale In-Place Queries of S3 Data". With Redshift Spectrum, you can extend the analytic power of Amazon Redshift beyond data stored on local disks in your data warehouse to query vast amounts of unstructured data in your Amazon S3 “data lake” -- without having to load or transform any data.
Amazon Redshift can be classified as a tool in the "Big Data as a Service" category, while Amazon Redshift Spectrum is grouped under "Big Data Tools".
Lyft, Coursera, and 9GAG are some of the popular companies that use Amazon Redshift, whereas Amazon Redshift Spectrum is used by VSCO, CommonBond, and intermix.io. Amazon Redshift has a broader approval, being mentioned in 270 company stacks & 68 developers stacks; compared to Amazon Redshift Spectrum, which is listed in 5 company stacks and 4 developer stacks.
We need to perform ETL from several databases into a data warehouse or data lake. We want to
- keep raw and transformed data available to users to draft their own queries efficiently
- give users the ability to give custom permissions and SSO
- move between open-source on-premises development and cloud-based production environments
We want to use inexpensive Amazon EC2 instances only on medium-sized data set 16GB to 32GB feeding into Tableau Server or PowerBI for reporting and data analysis purposes.
You could also use AWS Lambda and use Cloudwatch event schedule if you know when the function should be triggered. The benefit is that you could use any language and use the respective database client.
But if you orchestrate ETLs then it makes sense to use Apache Airflow. This requires Python knowledge.

Though we have always built something custom, Apache airflow (https://airflow.apache.org/) stood out as a key contender/alternative when it comes to open sources. On the commercial offering, Amazon Redshift combined with Amazon Kinesis (for complex manipulations) is great for BI, though Redshift as such is expensive.
You may want to look into a Data Virtualization product called Conduit. It connects to disparate data sources in AWS, on prem, Azure, GCP, and exposes them as a single unified Spark SQL view to PowerBI (direct query) or Tableau. Allows auto query and caching policies to enhance query speeds and experience. Has a GPU query engine and optimized Spark for fallback. Can be deployed on your AWS VM or on prem, scales up and out. Sounds like the ideal solution to your needs.
Pros of Amazon Redshift
- Data Warehousing37
- Scalable27
- SQL17
- Backed by Amazon14
- Encryption5
- Cheap and reliable1
- Isolation1
- Best Cloud DW Performance1
- Fast columnar storage1
Pros of Amazon Redshift Spectrum
- Good Performance1
- Great Documentation1
- Economical1