Need advice about which tool to choose?Ask the StackShare community!

Airflow

1.5K
2.4K
+ 1
123
Process Street

24
26
+ 1
0
Add tool

Airflow vs Process Street: What are the differences?

What is Airflow? A platform to programmaticaly author, schedule and monitor data pipelines, by Airbnb. Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

What is Process Street? Simple Process and Workflow Management. It is a cloud-based business process management (BPM) solution that enables organizations to create checklists and process documents for recurring projects.

Airflow and Process Street belong to "Workflow Manager" category of the tech stack.

Some of the features offered by Airflow are:

  • Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writting code that instantiate pipelines dynamically.
  • Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.
  • Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built in the core of Airflow using powerful Jinja templating engine.

On the other hand, Process Street provides the following key features:

  • Collaborative workflows
  • Procedure documents
  • Data structure

Airflow is an open source tool with 13.9K GitHub stars and 5.15K GitHub forks. Here's a link to Airflow's open source repository on GitHub.

Advice on Airflow and Process Street
Needs advice
on
AirflowAirflowLuigiLuigi
and
Apache SparkApache Spark

I am so confused. I need a tool that will allow me to go to about 10 different URLs to get a list of objects. Those object lists will be hundreds or thousands in length. I then need to get detailed data lists about each object. Those detailed data lists can have hundreds of elements that could be map/reduced somehow. My batch process dies sometimes halfway through which means hours of processing gone, i.e. time wasted. I need something like a directed graph that will keep results of successful data collection and allow me either pragmatically or manually to retry the failed ones some way (0 - forever) times. I want it to then process all the ones that have succeeded or been effectively ignored and load the data store with the aggregation of some couple thousand data-points. I know hitting this many endpoints is not a good practice but I can't put collectors on all the endpoints or anything like that. It is pretty much the only way to get the data.

See more
Replies (1)
Gilroy Gordon
Solution Architect at IGonics Limited · | 2 upvotes · 189K views
Recommends
CassandraCassandra

For a non-streaming approach:

You could consider using more checkpoints throughout your spark jobs. Furthermore, you could consider separating your workload into multiple jobs with an intermittent data store (suggesting cassandra or you may choose based on your choice and availability) to store results , perform aggregations and store results of those.

Spark Job 1 - Fetch Data From 10 URLs and store data and metadata in a data store (cassandra) Spark Job 2..n - Check data store for unprocessed items and continue the aggregation

Alternatively for a streaming approach: Treating your data as stream might be useful also. Spark Streaming allows you to utilize a checkpoint interval - https://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing

See more
Get Advice from developers at your company using StackShare Enterprise. Sign up for StackShare Enterprise.
Learn More
Pros of Airflow
Pros of Process Street
  • 50
    Features
  • 14
    Task Dependency Management
  • 12
    Cluster of workers
  • 12
    Beautiful UI
  • 10
    Extensibility
  • 5
    Complex workflows
  • 5
    Python
  • 5
    Open source
  • 3
    Good api
  • 3
    Custom operators
  • 2
    Dashboard
  • 2
    Apache project
    Be the first to leave a pro

    Sign up to add or upvote prosMake informed product decisions

    Cons of Airflow
    Cons of Process Street
    • 2
      Running it on kubernetes cluster relatively complex
    • 2
      Open source - provides minimum or no support
    • 1
      Logical separation of DAGs is not straight forward
    • 1
      Observability is not great when the DAGs exceed 250
      Be the first to leave a con

      Sign up to add or upvote consMake informed product decisions

      What is Airflow?

      Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

      What is Process Street?

      It is a cloud-based business process management (BPM) solution that enables organizations to create checklists and process documents for recurring projects.

      Need advice about which tool to choose?Ask the StackShare community!

      Jobs that mention Airflow and Process Street as a desired skillset
      What companies use Airflow?
      What companies use Process Street?
      See which teams inside your own company are using Airflow or Process Street.
      Sign up for StackShare EnterpriseLearn More

      Sign up to get full access to all the companiesMake informed product decisions

      What tools integrate with Airflow?
      What tools integrate with Process Street?

      Sign up to get full access to all the tool integrationsMake informed product decisions

      Blog Posts

      What are some alternatives to Airflow and Process Street?
      Luigi
      It is a Python module that helps you build complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization etc. It also comes with Hadoop support built in.
      Apache NiFi
      An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.
      Jenkins
      In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project.
      AWS Step Functions
      AWS Step Functions makes it easy to coordinate the components of distributed applications and microservices using visual workflows. Building applications from individual components that each perform a discrete function lets you scale and change applications quickly.
      Pachyderm
      Pachyderm is an open source MapReduce engine that uses Docker containers for distributed computations.
      See all alternatives