StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Big Data Tools
  5. Airflow vs Apache Impala

Airflow vs Apache Impala

OverviewComparisonAlternatives

Overview

Apache Impala
Apache Impala
Stacks145
Followers301
Votes18
GitHub Stars34
Forks33
Airflow
Airflow
Stacks1.7K
Followers2.8K
Votes128

Airflow vs Apache Impala: What are the differences?

What is Airflow? A platform to programmaticaly author, schedule and monitor data pipelines, by Airbnb. Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

What is Apache Impala? Real-time Query for Hadoop. Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.

Airflow belongs to "Workflow Manager" category of the tech stack, while Apache Impala can be primarily classified under "Big Data Tools".

Some of the features offered by Airflow are:

  • Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writting code that instantiate pipelines dynamically.
  • Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.
  • Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built in the core of Airflow using powerful Jinja templating engine.

On the other hand, Apache Impala provides the following key features:

  • Do BI-style Queries on Hadoop
  • Unify Your Infrastructure
  • Implement Quickly

"Features" is the primary reason why developers consider Airflow over the competitors, whereas "Super fast" was stated as the key factor in picking Apache Impala.

Airflow and Apache Impala are both open source tools. It seems that Airflow with 21.2K GitHub stars and 8.36K forks on GitHub has more adoption than Apache Impala with 3 GitHub stars and 4 GitHub forks.

According to the StackShare community, Airflow has a broader approval, being mentioned in 223 company stacks & 809 developers stacks; compared to Apache Impala, which is listed in 18 company stacks and 87 developer stacks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Detailed Comparison

Apache Impala
Apache Impala
Airflow
Airflow

Impala is a modern, open source, MPP SQL query engine for Apache Hadoop. Impala is shipped by Cloudera, MapR, and Amazon. With Impala, you can query data, whether stored in HDFS or Apache HBase – including SELECT, JOIN, and aggregate functions – in real time.

Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

Do BI-style Queries on Hadoop;Unify Your Infrastructure;Implement Quickly;Count on Enterprise-class Security;Retain Freedom from Lock-in;Expand the Hadoop User-verse
Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writting code that instantiate pipelines dynamically.;Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.;Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built in the core of Airflow using powerful Jinja templating engine.;Scalable: Airflow has a modular architecture and uses a message queue to talk to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity.
Statistics
GitHub Stars
34
GitHub Stars
-
GitHub Forks
33
GitHub Forks
-
Stacks
145
Stacks
1.7K
Followers
301
Followers
2.8K
Votes
18
Votes
128
Pros & Cons
Pros
  • 11
    Super fast
  • 1
    Massively Parallel Processing
  • 1
    Load Balancing
  • 1
    High Performance
  • 1
    Replication
Pros
  • 53
    Features
  • 14
    Task Dependency Management
  • 12
    Cluster of workers
  • 12
    Beautiful UI
  • 10
    Extensibility
Cons
  • 2
    Running it on kubernetes cluster relatively complex
  • 2
    Observability is not great when the DAGs exceed 250
  • 2
    Open source - provides minimum or no support
  • 1
    Logical separation of DAGs is not straight forward
Integrations
Hadoop
Hadoop
Mode
Mode
Redash
Redash
Apache Kudu
Apache Kudu
No integrations available

What are some alternatives to Apache Impala, Airflow?

Apache Spark

Apache Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

Presto

Presto

Distributed SQL Query Engine for Big Data

Amazon Athena

Amazon Athena

Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

Apache Flink

Apache Flink

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

lakeFS

lakeFS

It is an open-source data version control system for data lakes. It provides a “Git for data” platform enabling you to implement best practices from software engineering on your data lake, including branching and merging, CI/CD, and production-like dev/test environments.

Druid

Druid

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations.

GitHub Actions

GitHub Actions

It makes it easy to automate all your software workflows, now with world-class CI/CD. Build, test, and deploy your code right from GitHub. Make code reviews, branch management, and issue triaging work the way you want.

Apache Kylin

Apache Kylin

Apache Kylin™ is an open source Distributed Analytics Engine designed to provide SQL interface and multi-dimensional analysis (OLAP) on Hadoop/Spark supporting extremely large datasets, originally contributed from eBay Inc.

Splunk

Splunk

It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.

Vertica

Vertica

It provides a best-in-class, unified analytics platform that will forever be independent from underlying infrastructure.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase