StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Background Jobs
  4. Message Queue
  5. Airflow vs Celery

Airflow vs Celery

OverviewDecisionsComparisonAlternatives

Overview

Celery
Celery
Stacks1.7K
Followers1.6K
Votes280
GitHub Stars27.5K
Forks4.9K
Airflow
Airflow
Stacks1.7K
Followers2.8K
Votes128

Airflow vs Celery: What are the differences?

Apache Airflow is an open-source platform to programmatically author, schedule, and monitor workflows, while Celery is a distributed task queue system for executing tasks asynchronously in a distributed manner. Let's explore the key differences between them:

  1. Architecture: Airflow is a workflow scheduler system while Celery is a distributed task queue. Airflow provides a way to schedule and manage data pipelines, where tasks can be orchestrated based on dependencies and time. On the other hand, Celery focuses on executing distributed tasks asynchronously, allowing for parallel processing and scaling of workloads.

  2. Task Execution: In Airflow, tasks are executed in a sequential manner, following the dependencies defined in the workflow. Each task represents a single unit of work. In contrast, Celery allows for parallel execution of tasks, distributing the workload across multiple worker nodes, which enables efficient utilization of system resources and faster task execution.

  3. Monitoring and Logging: Airflow provides a built-in web-based user interface for monitoring and managing workflows. It offers visual representations of task states, task history, and workflow status. Whereas Celery lacks a dedicated web-based interface for monitoring and logging. However, Celery integrates well with other monitoring and logging tools, allowing users to leverage existing frameworks for tracking task progress and logging outputs.

  4. Workflow Definition: Airflow workflows are defined using Python code, allowing for a high degree of flexibility and customization. Workflows in Airflow are defined as Directed Acyclic Graphs (DAGs) with tasks represented as Python functions. On the contrary, Celery tasks are defined as independent units of work, typically written as Python functions. The task dependencies can be defined programmatically or through task queues.

  5. Scheduling: Airflow provides a rich scheduling functionality, allowing users to define complex dependencies and time-based triggers for task execution. It supports scheduling of tasks based on fixed schedules, cron expressions, or external triggers. Celery, on the other hand, does not provide built-in scheduling capabilities. It relies on external systems or custom code to define the execution timing and order of tasks.

  6. Community and Ecosystem: Airflow has a larger and more mature community compared to Celery, which results in a wider range of integrations, plugins, and community-driven contributions. Airflow has built-in support for various data-processing frameworks, databases, and cloud platforms, making it well-suited for data engineering and analytics tasks. Celery also has an active community but is more focused on distributed task processing, with a smaller ecosystem of extensions and integrations.

In summary, Airflow is designed for orchestrating workflows and managing dependencies, while Celery is specialized in distributing and executing tasks across a network.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Celery, Airflow

Shantha
Shantha

Sep 30, 2020

Needs adviceonRabbitMQRabbitMQCeleryCeleryMongoDBMongoDB

I am just a beginner at these two technologies.

Problem statement: I am getting lakh of users from the sequel server for whom I need to create caches in MongoDB by making different REST API requests.

Here these users can be treated as messages. Each REST API request is a task.

I am confused about whether I should go for RabbitMQ alone or Celery.

If I have to go with RabbitMQ, I prefer to use python with Pika module. But the challenge with Pika is, it is not thread-safe. So I am not finding a way to execute a lakh of API requests in parallel using multiple threads using Pika.

If I have to go with Celery, I don't know how I can achieve better scalability in executing these API requests in parallel.

334k views334k
Comments
Anonymous
Anonymous

Jan 19, 2020

Needs advice

I am so confused. I need a tool that will allow me to go to about 10 different URLs to get a list of objects. Those object lists will be hundreds or thousands in length. I then need to get detailed data lists about each object. Those detailed data lists can have hundreds of elements that could be map/reduced somehow. My batch process dies sometimes halfway through which means hours of processing gone, i.e. time wasted. I need something like a directed graph that will keep results of successful data collection and allow me either pragmatically or manually to retry the failed ones some way (0 - forever) times. I want it to then process all the ones that have succeeded or been effectively ignored and load the data store with the aggregation of some couple thousand data-points. I know hitting this many endpoints is not a good practice but I can't put collectors on all the endpoints or anything like that. It is pretty much the only way to get the data.

294k views294k
Comments

Detailed Comparison

Celery
Celery
Airflow
Airflow

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

-
Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writting code that instantiate pipelines dynamically.;Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.;Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built in the core of Airflow using powerful Jinja templating engine.;Scalable: Airflow has a modular architecture and uses a message queue to talk to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity.
Statistics
GitHub Stars
27.5K
GitHub Stars
-
GitHub Forks
4.9K
GitHub Forks
-
Stacks
1.7K
Stacks
1.7K
Followers
1.6K
Followers
2.8K
Votes
280
Votes
128
Pros & Cons
Pros
  • 99
    Task queue
  • 63
    Python integration
  • 40
    Django integration
  • 30
    Scheduled Task
  • 19
    Publish/subsribe
Cons
  • 4
    Sometimes loses tasks
  • 1
    Depends on broker
Pros
  • 53
    Features
  • 14
    Task Dependency Management
  • 12
    Beautiful UI
  • 12
    Cluster of workers
  • 10
    Extensibility
Cons
  • 2
    Running it on kubernetes cluster relatively complex
  • 2
    Observability is not great when the DAGs exceed 250
  • 2
    Open source - provides minimum or no support
  • 1
    Logical separation of DAGs is not straight forward

What are some alternatives to Celery, Airflow?

Kafka

Kafka

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

RabbitMQ

RabbitMQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Amazon SQS

Amazon SQS

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

NSQ

NSQ

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

ActiveMQ

ActiveMQ

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

ZeroMQ

ZeroMQ

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Apache NiFi

Apache NiFi

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Gearman

Gearman

Gearman allows you to do work in parallel, to load balance processing, and to call functions between languages. It can be used in a variety of applications, from high-availability web sites to the transport of database replication events.

Memphis

Memphis

Highly scalable and effortless data streaming platform. Made to enable developers and data teams to collaborate and build real-time and streaming apps fast.

IronMQ

IronMQ

An easy-to-use highly available message queuing service. Built for distributed cloud applications with critical messaging needs. Provides on-demand message queuing with advanced features and cloud-optimized performance.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase