Jun 11, 2020
Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.
Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed. | An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic. |
Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writting code that instantiate pipelines dynamically.;Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.;Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built in the core of Airflow using powerful Jinja templating engine.;Scalable: Airflow has a modular architecture and uses a message queue to talk to orchestrate an arbitrary number of workers. Airflow is ready to scale to infinity. | Web-based user interface; Highly configurable; Data Provenance; Designed for extension; Secure |
Statistics | |
Stacks 1.7K | Stacks 393 |
Followers 2.8K | Followers 692 |
Votes 128 | Votes 65 |
Pros & Cons | |
Pros
Cons
| Pros
Cons
|
Integrations | |
| No integrations available | |

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

Transmit any volume of data, at any level of throughput, without losing messages or requiring other services to be always available. With SQS, you can offload the administrative burden of operating and scaling a highly available messaging cluster, while paying a low price for only what you use.

NSQ is a realtime distributed messaging platform designed to operate at scale, handling billions of messages per day. It promotes distributed and decentralized topologies without single points of failure, enabling fault tolerance and high availability coupled with a reliable message delivery guarantee. See features & guarantees.

Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.

The 0MQ lightweight messaging kernel is a library which extends the standard socket interfaces with features traditionally provided by specialised messaging middleware products. 0MQ sockets provide an abstraction of asynchronous message queues, multiple messaging patterns, message filtering (subscriptions), seamless access to multiple transport protocols and more.

Gearman allows you to do work in parallel, to load balance processing, and to call functions between languages. It can be used in a variety of applications, from high-availability web sites to the transport of database replication events.

Highly scalable and effortless data streaming platform. Made to enable developers and data teams to collaborate and build real-time and streaming apps fast.

An easy-to-use highly available message queuing service. Built for distributed cloud applications with critical messaging needs. Provides on-demand message queuing with advanced features and cloud-optimized performance.