Need advice about which tool to choose?Ask the StackShare community!

Airflow

1.5K
2.4K
+ 1
123
Apache NiFi

300
614
+ 1
62
Add tool

Airflow vs Apache NiFi: What are the differences?

Developers describe Airflow as "A platform to programmaticaly author, schedule and monitor data pipelines, by Airbnb". Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed. On the other hand, Apache NiFi is detailed as "A reliable system to process and distribute data". An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Airflow can be classified as a tool in the "Workflow Manager" category, while Apache NiFi is grouped under "Stream Processing".

Some of the features offered by Airflow are:

  • Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writting code that instantiate pipelines dynamically.
  • Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.
  • Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built in the core of Airflow using powerful Jinja templating engine.

On the other hand, Apache NiFi provides the following key features:

  • Web-based user interface
  • Highly configurable
  • Data Provenance

Airflow is an open source tool with 13.3K GitHub stars and 4.91K GitHub forks. Here's a link to Airflow's open source repository on GitHub.

According to the StackShare community, Airflow has a broader approval, being mentioned in 98 company stacks & 162 developers stacks; compared to Apache NiFi, which is listed in 10 company stacks and 12 developer stacks.

Advice on Airflow and Apache NiFi
Needs advice
on
AirflowAirflow
and
Apache NiFiApache NiFi

I am looking for the best tool to orchestrate #ETL workflows in non-Hadoop environments, mainly for regression testing use cases. Would Airflow or Apache NiFi be a good fit for this purpose?

For example, I want to run an Informatica ETL job and then run an SQL task as a dependency, followed by another task from Jira. What tool is best suited to set up such a pipeline?

See more
Replies (2)
Recommends
AirflowAirflow

I have been using Airflow for more than 2 years now and haven't thought about moving to any other platform. Coming back to your requirements, Airflow fits pretty well. 1. It has an excellent way to manage dependent tasks using DAG (Direct Acyclic Graph), You can create a DAG with tasks and manage which task is dependent on which and Airflow takes care of running it or not running a task in case the parent task fails. 2. Integrations - The airflow community has implemented various integration to different cloud services, to Hadoop, spark a and as well as Jira. Though it doesn't have in-built integration for Informatica you can also run your own service in Airflow as a task (which can handle all Informatica related operations).

  1. It's very easy to find/monitor and manage Jobs/Pipelines as Airflow provides a great consolidated UI.
See more
Josh Solomon
Sales Executive at Astronomer · | 0 upvotes · 18.1K views
Recommends
AirflowAirflow

Hey Sathya! With Airflow, you are able to create custom hooks and operators to trigger various types of jobs. There may be ones that exist already for informatica, but I am unsure. Would be happy to connect to discuss further if you are interested. josh@astronomer.io

See more
Needs advice
on
AirflowAirflowLuigiLuigi
and
Apache SparkApache Spark

I am so confused. I need a tool that will allow me to go to about 10 different URLs to get a list of objects. Those object lists will be hundreds or thousands in length. I then need to get detailed data lists about each object. Those detailed data lists can have hundreds of elements that could be map/reduced somehow. My batch process dies sometimes halfway through which means hours of processing gone, i.e. time wasted. I need something like a directed graph that will keep results of successful data collection and allow me either pragmatically or manually to retry the failed ones some way (0 - forever) times. I want it to then process all the ones that have succeeded or been effectively ignored and load the data store with the aggregation of some couple thousand data-points. I know hitting this many endpoints is not a good practice but I can't put collectors on all the endpoints or anything like that. It is pretty much the only way to get the data.

See more
Replies (1)
Gilroy Gordon
Solution Architect at IGonics Limited · | 2 upvotes · 189.7K views
Recommends
CassandraCassandra

For a non-streaming approach:

You could consider using more checkpoints throughout your spark jobs. Furthermore, you could consider separating your workload into multiple jobs with an intermittent data store (suggesting cassandra or you may choose based on your choice and availability) to store results , perform aggregations and store results of those.

Spark Job 1 - Fetch Data From 10 URLs and store data and metadata in a data store (cassandra) Spark Job 2..n - Check data store for unprocessed items and continue the aggregation

Alternatively for a streaming approach: Treating your data as stream might be useful also. Spark Streaming allows you to utilize a checkpoint interval - https://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing

See more
Get Advice from developers at your company using StackShare Enterprise. Sign up for StackShare Enterprise.
Learn More
Pros of Airflow
Pros of Apache NiFi
  • 50
    Features
  • 14
    Task Dependency Management
  • 12
    Cluster of workers
  • 12
    Beautiful UI
  • 10
    Extensibility
  • 5
    Complex workflows
  • 5
    Python
  • 5
    Open source
  • 3
    Good api
  • 3
    Custom operators
  • 2
    Dashboard
  • 2
    Apache project
  • 15
    Visual Data Flows using Directed Acyclic Graphs (DAGs)
  • 8
    Free (Open Source)
  • 7
    Simple-to-use
  • 5
    Reactive with back-pressure
  • 5
    Scalable horizontally as well as vertically
  • 4
    Fast prototyping
  • 3
    Bi-directional channels
  • 2
    Data provenance
  • 2
    Built-in graphical user interface
  • 2
    End-to-end security between all nodes
  • 2
    Can handle messages up to gigabytes in size
  • 1
    Hbase support
  • 1
    Kudu support
  • 1
    Hive support
  • 1
    Slack integration
  • 1
    Support for custom Processor in Java
  • 1
    Lot of articles
  • 1
    Lots of documentation

Sign up to add or upvote prosMake informed product decisions

Cons of Airflow
Cons of Apache NiFi
  • 2
    Running it on kubernetes cluster relatively complex
  • 2
    Open source - provides minimum or no support
  • 1
    Logical separation of DAGs is not straight forward
  • 1
    Observability is not great when the DAGs exceed 250
  • 2
    HA support is not full fledge
  • 2
    Memory-intensive

Sign up to add or upvote consMake informed product decisions

What is Airflow?

Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

What is Apache NiFi?

An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Need advice about which tool to choose?Ask the StackShare community!

Jobs that mention Airflow and Apache NiFi as a desired skillset
What companies use Airflow?
What companies use Apache NiFi?
See which teams inside your own company are using Airflow or Apache NiFi.
Sign up for StackShare EnterpriseLearn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Airflow?
What tools integrate with Apache NiFi?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

What are some alternatives to Airflow and Apache NiFi?
Luigi
It is a Python module that helps you build complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization etc. It also comes with Hadoop support built in.
Jenkins
In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project.
AWS Step Functions
AWS Step Functions makes it easy to coordinate the components of distributed applications and microservices using visual workflows. Building applications from individual components that each perform a discrete function lets you scale and change applications quickly.
Pachyderm
Pachyderm is an open source MapReduce engine that uses Docker containers for distributed computations.
Kubeflow
The Kubeflow project is dedicated to making Machine Learning on Kubernetes easy, portable and scalable by providing a straightforward way for spinning up best of breed OSS solutions.
See all alternatives