Alternatives to Jenkins logo

Alternatives to Jenkins

TeamCity, CircleCI, Travis CI, Bamboo, and Apache Maven are the most popular alternatives and competitors to Jenkins.
54.7K
46.3K
+ 1
2.2K

What is Jenkins and what are its top alternatives?

In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project.
Jenkins is a tool in the Continuous Integration category of a tech stack.
Jenkins is an open source tool with 20.9K GitHub stars and 8.1K GitHub forks. Here’s a link to Jenkins's open source repository on GitHub

Top Alternatives to Jenkins

  • TeamCity
    TeamCity

    TeamCity is a user-friendly continuous integration (CI) server for professional developers, build engineers, and DevOps. It is trivial to setup and absolutely free for small teams and open source projects. ...

  • CircleCI
    CircleCI

    Continuous integration and delivery platform helps software teams rapidly release code with confidence by automating the build, test, and deploy process. Offers a modern software development platform that lets teams ramp. ...

  • Travis CI
    Travis CI

    Free for open source projects, our CI environment provides multiple runtimes (e.g. Node.js or PHP versions), data stores and so on. Because of this, hosting your project on travis-ci.com means you can effortlessly test your library or applications against multiple runtimes and data stores without even having all of them installed locally. ...

  • Bamboo
    Bamboo

    Focus on coding and count on Bamboo as your CI and build server! Create multi-stage build plans, set up triggers to start builds upon commits, and assign agents to your critical builds and deployments. ...

  • Apache Maven
    Apache Maven

    Maven allows a project to build using its project object model (POM) and a set of plugins that are shared by all projects using Maven, providing a uniform build system. Once you familiarize yourself with how one Maven project builds you automatically know how all Maven projects build saving you immense amounts of time when trying to navigate many projects. ...

  • Puppet Labs
    Puppet Labs

    Puppet is an automated administrative engine for your Linux, Unix, and Windows systems and performs administrative tasks (such as adding users, installing packages, and updating server configurations) based on a centralized specification. ...

  • Ansible
    Ansible

    Ansible is an IT automation tool. It can configure systems, deploy software, and orchestrate more advanced IT tasks such as continuous deployments or zero downtime rolling updates. Ansible’s goals are foremost those of simplicity and maximum ease of use. ...

  • GitLab
    GitLab

    GitLab offers git repository management, code reviews, issue tracking, activity feeds and wikis. Enterprises install GitLab on-premise and connect it with LDAP and Active Directory servers for secure authentication and authorization. A single GitLab server can handle more than 25,000 users but it is also possible to create a high availability setup with multiple active servers. ...

Jenkins alternatives & related posts

TeamCity logo

TeamCity

1.2K
1.1K
315
TeamCity is an ultimate Continuous Integration tool for professionals
1.2K
1.1K
+ 1
315
PROS OF TEAMCITY
  • 61
    Easy to configure
  • 37
    Reliable and high-quality
  • 32
    Github integration
  • 32
    User friendly
  • 31
    On premise
  • 18
    Great UI
  • 16
    Smart
  • 12
    Can run jobs in parallel
  • 12
    Free for open source
  • 8
    Crossplatform
  • 5
    Chain dependencies
  • 5
    Fully-functional out of the box
  • 4
    REST API
  • 4
    Great support by jetbrains
  • 4
    Projects hierarchy
  • 4
    100+ plugins
  • 3
    Personal notifications
  • 3
    Per-project permissions
  • 3
    Free for small teams
  • 3
    Build templates
  • 2
    Upload build artifacts
  • 2
    Artifact dependencies
  • 2
    Build progress messages promoting from running process
  • 2
    Official reliable support
  • 2
    Smart build failure analysis and tracking
  • 2
    Ide plugins
  • 2
    GitLab integration
  • 1
    Built-in artifacts repository
  • 1
    TeamCity Professional is FREE
  • 1
    Repository-stored, full settings dsl with ide support
  • 1
    Powerful build chains / pipelines
  • 0
    1
  • 0
    High-Availability
  • 0
    Hosted internally
CONS OF TEAMCITY
  • 3
    High costs for more than three build agents
  • 2
    Proprietary
  • 2
    User-friendly
  • 2
    User friendly

related TeamCity posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 6M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Sarah Elson
Product Growth at LambdaTest · | 4 upvotes · 457.8K views

@producthunt LambdaTest Selenium JavaScript Java Python PHP Cucumber TeamCity CircleCI With this new release of LambdaTest automation, you can run tests across an Online Selenium Grid of 2000+ browsers and OS combinations to perform cross browser testing. This saves you from the pain of maintaining the infrastructure and also saves you the licensing costs for browsers and operating systems. #testing #Seleniumgrid #Selenium #testautomation #automation #webdriver #producthunt hunted

See more
CircleCI logo

CircleCI

11K
6.7K
962
Automate your development process quickly, safely, and at scale
11K
6.7K
+ 1
962
PROS OF CIRCLECI
  • 224
    Github integration
  • 176
    Easy setup
  • 152
    Fast builds
  • 94
    Competitively priced
  • 74
    Slack integration
  • 54
    Docker support
  • 44
    Awesome UI
  • 33
    Great customer support
  • 18
    Ios support
  • 14
    Hipchat integration
  • 13
    SSH debug access
  • 11
    Free for Open Source
  • 5
    Bitbucket integration
  • 5
    Mobile support
  • 4
    Nodejs support
  • 4
    AWS CodeDeploy integration
  • 3
    Great support
  • 3
    Free for Github private repo
  • 3
    YAML configuration
  • 2
    Clojurescript
  • 2
    OSX support
  • 2
    Continuous Deployment
  • 2
    Simple, clean UI
  • 2
    Clojure
  • 1
    Unstable
  • 1
    Favorite
  • 1
    Helpful documentation
  • 1
    Autoscaling
  • 1
    Extremely configurable
  • 1
    Works
  • 1
    Android support
  • 1
    Fair pricing
  • 1
    All inclusive testing
  • 1
    Japanese in rspec comment appears OK
  • 1
    Build PR Branch Only
  • 1
    So circular
  • 1
    Easy setup, easy to understand, fast and reliable
  • 1
    Parallel builds for slow test suites
  • 1
    Easy setup. 2.0 is fast!
  • 1
    Parallelism
  • 1
    Easy to deploy to private servers
  • 1
    Really easy to use
  • 0
    Stable
CONS OF CIRCLECI
  • 12
    Unstable
  • 6
    Scammy pricing structure
  • 0
    Aggressive Github permissions

related CircleCI posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 6M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Tim Abbott
Shared insights
on
Travis CITravis CICircleCICircleCI
at

We actually started out on Travis CI, but we've migrated our main builds to CircleCI, and it's been a huge improvement.

The reason it's been a huge improvement is that Travis CI has a fundamentally bad design for their images, where they start with a standard base Linux image containing tons of packages (several versions of postgres, every programming language environment, etc). This is potentially nice for the "get builds for a small project running quickly" use case, but it's a total disaster for a larger project that needs a decent number of dependencies and cares about the performance and reliability of their build.

This issue is exacerbated by their networking infrastructure being unreliable; we usually saw over 1% of builds failing due to transient networking errors in Travis CI, even after we added retries to the most frequently failing operations like apt update or pip install. And they never install Ubuntu's point release updates to their images. So doing an apt update, apt install, or especially apt upgrade would take forever. We ended up writing code to actually uninstall many of their base packages and pin the versions of hundreds of others to get a semi-fast, semi-reliable build. It was infuriating.

The CircleCI v2.0 system has the right design for a CI system: we can customize the base image to start with any expensive-to-install packages we need for our build, and we can update that image if and when we want to. The end result is that when migrating, we were able to delete all the hacky optimizations mentioned above, while still ending up with a 50% faster build latency. And we've also had 5-10x fewer issues with networking-related flakes, which means one doesn't have to constantly check whether a build failure is actually due to an issue with the code under test or "just another networking flake".

See more
Travis CI logo

Travis CI

11.6K
6.4K
1.7K
A hosted continuous integration service for open source and private projects
11.6K
6.4K
+ 1
1.7K
PROS OF TRAVIS CI
  • 506
    Github integration
  • 388
    Free for open source
  • 271
    Easy to get started
  • 191
    Nice interface
  • 162
    Automatic deployment
  • 72
    Tutorials for each programming language
  • 40
    Friendly folks
  • 29
    Support for multiple ruby versions
  • 28
    Osx support
  • 24
    Easy handling of secret keys
  • 6
    Fast builds
  • 4
    Support for students
  • 3
    The best tool for Open Source CI
  • 3
    Hosted
  • 3
    Build Matrices
  • 2
    Github Pull Request build
  • 2
    Straightforward Github/Coveralls integration
  • 2
    Easy of Usage
  • 2
    Integrates with everything
  • 1
    Caching resolved artifacts
  • 1
    Docker support
  • 1
    Great Documentation
  • 1
    Build matrix
  • 1
    No-brainer for CI
  • 1
    Debug build workflow
  • 1
    Ubuntu trusty is not supported
  • 1
    Free for students
  • 1
    Configuration saved with project repository
  • 1
    Multi-threaded run
  • 1
    Hipchat Integration
  • 0
    Perfect
CONS OF TRAVIS CI
  • 8
    Can't be hosted insternally
  • 3
    Feature lacking
  • 3
    Unstable
  • 2
    Incomplete documentation for all platforms

related Travis CI posts

Thierry Schellenbach

Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.

Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.

Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named “debug build” button, Travis is now the clear winner. It’s easy to use and free for open source, with no need to maintain anything.

#ContinuousIntegration #CodeCollaborationVersionControl

See more
Tim Abbott
Shared insights
on
Travis CITravis CICircleCICircleCI
at

We actually started out on Travis CI, but we've migrated our main builds to CircleCI, and it's been a huge improvement.

The reason it's been a huge improvement is that Travis CI has a fundamentally bad design for their images, where they start with a standard base Linux image containing tons of packages (several versions of postgres, every programming language environment, etc). This is potentially nice for the "get builds for a small project running quickly" use case, but it's a total disaster for a larger project that needs a decent number of dependencies and cares about the performance and reliability of their build.

This issue is exacerbated by their networking infrastructure being unreliable; we usually saw over 1% of builds failing due to transient networking errors in Travis CI, even after we added retries to the most frequently failing operations like apt update or pip install. And they never install Ubuntu's point release updates to their images. So doing an apt update, apt install, or especially apt upgrade would take forever. We ended up writing code to actually uninstall many of their base packages and pin the versions of hundreds of others to get a semi-fast, semi-reliable build. It was infuriating.

The CircleCI v2.0 system has the right design for a CI system: we can customize the base image to start with any expensive-to-install packages we need for our build, and we can update that image if and when we want to. The end result is that when migrating, we were able to delete all the hacky optimizations mentioned above, while still ending up with a 50% faster build latency. And we've also had 5-10x fewer issues with networking-related flakes, which means one doesn't have to constantly check whether a build failure is actually due to an issue with the code under test or "just another networking flake".

See more
Bamboo logo

Bamboo

503
523
17
Tie automated builds, tests, and releases together in a single workflow
503
523
+ 1
17
PROS OF BAMBOO
  • 10
    Integrates with other Atlassian tools
  • 4
    Great notification scheme
  • 2
    Great UI
  • 1
    Has Deployment Projects
CONS OF BAMBOO
  • 6
    Expensive
  • 1
    Low community support
  • 1
    Bad UI
  • 1
    Bad integration with docker

related Bamboo posts

xie zhifeng
Shared insights
on
BambooBambooJenkinsJenkinsGitLabGitLab
at

I am choosing a DevOps toolset for my team. GitLab is open source and quite cloud-native. Jenkins has a very popular environment system but old-style technicals. Bamboo is very nice but integrated only with Atlassian products.

See more
Apache Maven logo

Apache Maven

3K
1.6K
413
Apache build manager for Java projects.
3K
1.6K
+ 1
413
PROS OF APACHE MAVEN
  • 137
    Dependency management
  • 70
    Necessary evil
  • 60
    I’d rather code my app, not my build
  • 48
    Publishing packaged artifacts
  • 43
    Convention over configuration
  • 18
    Modularisation
  • 11
    Consistency across builds
  • 6
    Prevents overengineering using scripting
  • 4
    Runs Tests
  • 4
    Lot of cool plugins
  • 3
    Extensible
  • 2
    Hard to customize
  • 2
    Runs on Linux
  • 1
    Runs on OS X
  • 1
    Slow incremental build
  • 1
    Inconsistent buillds
  • 1
    Undeterminisc
  • 1
    Good IDE tooling
CONS OF APACHE MAVEN
  • 6
    Complex
  • 1
    Inconsistent buillds
  • 0
    Not many plugin-alternatives

related Apache Maven posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 6M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Shared insights
on
Apache MavenApache MavenGradleGradle
at

We use Apache Maven because it is a standard. Gradle is very good alternative, but Gradle doesn't provide any advantage for our project. Gradle is slower (without running daemon), need more resources and a learning curve is quite big. Our project can not use a great flexibility of Gradle. On the other hand, Maven is well-know tool integrated in many IDEs, Dockers and so on.

See more
Puppet Labs logo

Puppet Labs

990
771
227
Server automation framework and application
990
771
+ 1
227
PROS OF PUPPET LABS
  • 52
    Devops
  • 44
    Automate it
  • 26
    Reusable components
  • 21
    Dynamic and idempotent server configuration
  • 18
    Great community
  • 12
    Very scalable
  • 12
    Cloud management
  • 10
    Easy to maintain
  • 9
    Free tier
  • 6
    Works with Amazon EC2
  • 4
    Declarative
  • 4
    Ruby
  • 3
    Works with Azure
  • 3
    Works with OpenStack
  • 2
    Nginx
  • 1
    Ease of use
CONS OF PUPPET LABS
  • 3
    Steep learning curve
  • 1
    Customs types idempotence

related Puppet Labs posts

Shared insights
on
SaltSaltPuppet LabsPuppet LabsAnsibleAnsible
at

By 2014, the DevOps team at Lyft decided to port their infrastructure code from Puppet to Salt. At that point, the Puppet code based included around "10,000 lines of spaghetti-code,” which was unfamiliar and challenging to the relatively new members of the DevOps team.

“The DevOps team felt that the Puppet infrastructure was too difficult to pick up quickly and would be impossible to introduce to [their] developers as the tool they’d use to manage their own services.”

To determine a path forward, the team assessed both Ansible and Salt, exploring four key areas: simplicity/ease of use, maturity, performance, and community.

They found that “Salt’s execution and state module support is more mature than Ansible’s, overall,” and that “Salt was faster than Ansible for state/playbook runs.” And while both have high levels of community support, Salt exceeded expectations in terms of friendless and responsiveness to opened issues.

See more
Marcel Kornegoor

Since #ATComputing is a vendor independent Linux and open source specialist, we do not have a favorite Linux distribution. We mainly use Ubuntu , Centos Debian , Red Hat Enterprise Linux and Fedora during our daily work. These are also the distributions we see most often used in our customers environments.

For our #ci/cd training, we use an open source pipeline that is build around Visual Studio Code , Jenkins , VirtualBox , GitHub , Docker Kubernetes and Google Compute Engine.

For #ServerConfigurationAndAutomation, we have embraced and contributed to Ansible mainly because it is not only flexible and powerful, but also straightforward and easier to learn than some other (open source) solutions. On the other hand: we are not affraid of Puppet Labs and Chef either.

Currently, our most popular #programming #Language course is Python . The reason Python is so popular has to do with it's versatility, but also with its low complexity. This helps sysadmins to write scripts or simple programs to make their job less repetitive and automating things more fun. Python is also widely used to communicate with (REST) API's and for data analysis.

See more
Ansible logo

Ansible

17.9K
14.4K
1.3K
Radically simple configuration-management, application deployment, task-execution, and multi-node orchestration engine
17.9K
14.4K
+ 1
1.3K
PROS OF ANSIBLE
  • 284
    Agentless
  • 210
    Great configuration
  • 199
    Simple
  • 176
    Powerful
  • 155
    Easy to learn
  • 69
    Flexible
  • 55
    Doesn't get in the way of getting s--- done
  • 35
    Makes sense
  • 30
    Super efficient and flexible
  • 27
    Powerful
  • 11
    Dynamic Inventory
  • 9
    Backed by Red Hat
  • 7
    Works with AWS
  • 6
    Cloud Oriented
  • 6
    Easy to maintain
  • 4
    Vagrant provisioner
  • 4
    Simple and powerful
  • 4
    Multi language
  • 4
    Simple
  • 4
    Because SSH
  • 4
    Procedural or declarative, or both
  • 4
    Easy
  • 3
    Consistency
  • 2
    Well-documented
  • 2
    Masterless
  • 2
    Debugging is simple
  • 2
    Merge hash to get final configuration similar to hiera
  • 2
    Fast as hell
  • 1
    Manage any OS
  • 1
    Work on windows, but difficult to manage
  • 1
    Certified Content
CONS OF ANSIBLE
  • 8
    Dangerous
  • 5
    Hard to install
  • 3
    Doesn't Run on Windows
  • 3
    Bloated
  • 3
    Backward compatibility
  • 2
    No immutable infrastructure

related Ansible posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 6M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Sebastian Gębski

Heroku was a decent choice to start a business, but at some point our platform was too big, too complex & too heterogenic, so Heroku started to be a constraint, not a benefit. First, we've started containerizing our apps with Docker to eliminate "works in my machine" syndrome & uniformize the environment setup. The first orchestration was composed with Docker Compose , but at some point it made sense to move it to Kubernetes. Fortunately, we've made a very good technical decision when starting our work with containers - all the container configuration & provisions HAD (since the beginning) to be done in code (Infrastructure as Code) - we've used Terraform & Ansible for that (correspondingly). This general trend of containerisation was accompanied by another, parallel & equally big project: migrating environments from Heroku to AWS: using Amazon EC2 , Amazon EKS, Amazon S3 & Amazon RDS.

See more
GitLab logo

GitLab

56.6K
48.2K
2.4K
Open source self-hosted Git management software
56.6K
48.2K
+ 1
2.4K
PROS OF GITLAB
  • 505
    Self hosted
  • 428
    Free
  • 338
    Has community edition
  • 241
    Easy setup
  • 239
    Familiar interface
  • 136
    Includes many features, including ci
  • 112
    Nice UI
  • 83
    Good integration with gitlabci
  • 56
    Simple setup
  • 34
    Has an official mobile app
  • 33
    Free private repository
  • 30
    Continuous Integration
  • 21
    Open source, great ui (like github)
  • 17
    Slack Integration
  • 13
    Full CI flow
  • 11
    Free and unlimited private git repos
  • 9
    User, group, and project access management is simple
  • 8
    Intuitive UI
  • 8
    All in one (Git, CI, Agile..)
  • 7
    Built-in CI
  • 5
    Full DevOps suite with Git
  • 5
    Both public and private Repositories
  • 5
    CI
  • 4
    Build/pipeline definition alongside code
  • 4
    Integrated Docker Registry
  • 4
    Mattermost Chat client
  • 4
    Issue system
  • 4
    It's powerful source code management tool
  • 4
    So easy to use
  • 4
    Excellent
  • 3
    Dockerized
  • 3
    Low maintenance cost due omnibus-deployment
  • 3
    On-premises
  • 3
    Security and Stable
  • 3
    I like the its runners and executors feature
  • 3
    It's fully integrated
  • 3
    Unlimited free repos & collaborators
  • 3
    Great for team collaboration
  • 3
    Free private repos
  • 3
    Because is the best remote host for git repositories
  • 2
    One-click install through DigitalOcean
  • 2
    Review Apps feature
  • 2
    Built-in Docker Registry
  • 2
    Powerful software planning and maintaining tools
  • 2
    Multilingual interface
  • 2
    Groups of groups
  • 2
    Beautiful
  • 2
    Wounderful
  • 2
    Opensource
  • 2
    Not Microsoft Owned
  • 2
    Published IP list for whitelisting (gl-infra#434)
  • 2
    Kubernetes Integration
  • 2
    Many private repo
  • 2
    HipChat intergration
  • 2
    The dashboard with deployed environments
  • 2
    Native CI
  • 2
    It includes everything I need, all packaged with docker
  • 2
    Kubernetes integration with GitLab CI
  • 2
    Powerful Continuous Integration System
  • 1
    Supports Radius/Ldap & Browser Code Edits
CONS OF GITLAB
  • 28
    Slow ui performance
  • 8
    Introduce breaking bugs every release
  • 6
    Insecure (no published IP list for whitelisting)
  • 2
    Built-in Docker Registry
  • 1
    Review Apps feature

related GitLab posts

Tim Abbott
Shared insights
on
GitHubGitHubGitLabGitLab
at

I have mixed feelings on GitHub as a product and our use of it for the Zulip open source project. On the one hand, I do feel that being on GitHub helps people discover Zulip, because we have enough stars (etc.) that we rank highly among projects on the platform. and there is a definite benefit for lowering barriers to contribution (which is important to us) that GitHub has such a dominant position in terms of what everyone has accounts with.

But even ignoring how one might feel about their new corporate owner (MicroSoft), in a lot of ways GitHub is a bad product for open source projects. Years after the "Dear GitHub" letter, there are still basic gaps in its issue tracker:

  • You can't give someone permission to label/categorize issues without full write access to a project (including ability to merge things to master, post releases, etc.).
  • You can't let anyone with a GitHub account self-assign issues to themselves.
  • Many more similar issues.

It's embarrassing, because I've talked to GitHub product managers at various open source events about these things for 3 years, and they always agree the thing is important, but then nothing ever improves in the Issues product. Maybe the new management at MicroSoft will fix their product management situation, but if not, I imagine we'll eventually do the migration to GitLab.

We have a custom bot project, http://github.com/zulip/zulipbot, to deal with some of these issues where possible, and every other large project we talk to does the same thing, more or less.

See more
Joshua Dean Küpper
CEO at Scrayos UG (haftungsbeschränkt) · | 20 upvotes · 523.4K views

We use GitLab CI because of the great native integration as a part of the GitLab framework and the linting-capabilities it offers. The visualization of complex pipelines and the embedding within the project overview made Gitlab CI even more convenient. We use it for all projects, all deployments and as a part of GitLab Pages.

While we initially used the Shell-executor, we quickly switched to the Docker-executor and use it exclusively now.

We formerly used Jenkins but preferred to handle everything within GitLab . Aside from the unification of our infrastructure another motivation was the "configuration-in-file"-approach, that Gitlab CI offered, while Jenkins support of this concept was very limited and users had to resort to using the webinterface. Since the file is included within the repository, it is also version controlled, which was a huge plus for us.

See more