Alternatives to Buildkite logo

Alternatives to Buildkite

CircleCI, Jenkins, TeamCity, GitLab, and Bamboo are the most popular alternatives and competitors to Buildkite.
210
228
+ 1
115

What is Buildkite and what are its top alternatives?

Buildkite is a continuous integration and delivery tool that allows developers to run fast, secure, and scalable builds. Key features include parallel builds, flexible pipelines, integration with popular version control systems like GitHub, and support for containerized builds. However, Buildkite may be less suitable for smaller teams or individual developers due to its pricing structure and complexity.

  1. CircleCI: CircleCI is a popular CI/CD tool that offers powerful features such as parallelism, pipelines, and integration with various tools and services. Pros include ease of use and strong community support, while cons may include slower build times compared to Buildkite.
  2. Jenkins: Jenkins is a widely-used open-source automation server that offers a plethora of plugins for customization and flexibility in build processes. Pros include extensive plugin ecosystem and large user community, while cons may include complexity in setup and maintenance.
  3. Travis CI: Travis CI is a cloud-based CI service that integrates seamlessly with GitHub repositories for automated testing and deployment. Pros include easy setup and integration, while cons may include limited concurrency in free plans compared to Buildkite.
  4. GitLab CI/CD: GitLab CI/CD is a part of the GitLab platform that provides integrated CI/CD pipelines with version control. Pros include tight integration with GitLab repositories and easy pipeline configuration, while cons may include resource consumption on self-hosted instances.
  5. TeamCity: TeamCity is a build management and CI tool with features like build chains, code quality analysis, and integration with IDEs. Pros include a user-friendly interface and advanced build triggers, while cons may include licensing costs for larger teams.
  6. GitHub Actions: GitHub Actions is a CI/CD solution integrated into GitHub repositories, allowing for workflow automation and deployment. Pros include tight integration with GitHub and easy configuration through YAML files, while cons may include limitations on concurrent jobs.
  7. Bamboo: Bamboo is a CI/CD server from Atlassian that enables continuous integration, deployment, and release management. Pros include seamless integration with other Atlassian products and customizable deployment options, while cons may include higher costs for large teams.
  8. GoCD: GoCD is an open-source continuous delivery tool with advanced workflow modeling capabilities and support for complex deployment scenarios. Pros include visualization of the entire build process and flexibility in pipeline configuration, while cons may include a steeper learning curve for beginners.
  9. Codeship: Codeship is a cloud-based CI/CD platform that specializes in speed and simplicity with features like parallel testing and deployment pipelines. Pros include straightforward setup and fast build times, while cons may include limitations on concurrent builds in lower-tier plans.
  10. Azure DevOps: Azure DevOps is a comprehensive set of CI/CD tools that offer end-to-end software delivery with features like pipelines, artifacts, and test plans. Pros include tight integration with Azure services and robust security features, while cons may include complexity in setup for non-Azure projects.

Top Alternatives to Buildkite

  • CircleCI
    CircleCI

    Continuous integration and delivery platform helps software teams rapidly release code with confidence by automating the build, test, and deploy process. Offers a modern software development platform that lets teams ramp. ...

  • Jenkins
    Jenkins

    In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project. ...

  • TeamCity
    TeamCity

    TeamCity is a user-friendly continuous integration (CI) server for professional developers, build engineers, and DevOps. It is trivial to setup and absolutely free for small teams and open source projects. ...

  • GitLab
    GitLab

    GitLab offers git repository management, code reviews, issue tracking, activity feeds and wikis. Enterprises install GitLab on-premise and connect it with LDAP and Active Directory servers for secure authentication and authorization. A single GitLab server can handle more than 25,000 users but it is also possible to create a high availability setup with multiple active servers. ...

  • Bamboo
    Bamboo

    Focus on coding and count on Bamboo as your CI and build server! Create multi-stage build plans, set up triggers to start builds upon commits, and assign agents to your critical builds and deployments. ...

  • GitLab CI
    GitLab CI

    GitLab offers a continuous integration service. If you add a .gitlab-ci.yml file to the root directory of your repository, and configure your GitLab project to use a Runner, then each merge request or push triggers your CI pipeline. ...

  • GitHub Actions
    GitHub Actions

    It makes it easy to automate all your software workflows, now with world-class CI/CD. Build, test, and deploy your code right from GitHub. Make code reviews, branch management, and issue triaging work the way you want. ...

  • Travis CI
    Travis CI

    Free for open source projects, our CI environment provides multiple runtimes (e.g. Node.js or PHP versions), data stores and so on. Because of this, hosting your project on travis-ci.com means you can effortlessly test your library or applications against multiple runtimes and data stores without even having all of them installed locally. ...

Buildkite alternatives & related posts

CircleCI logo

CircleCI

12.6K
7K
974
Automate your development process quickly, safely, and at scale
12.6K
7K
+ 1
974
PROS OF CIRCLECI
  • 226
    Github integration
  • 177
    Easy setup
  • 153
    Fast builds
  • 94
    Competitively priced
  • 74
    Slack integration
  • 55
    Docker support
  • 45
    Awesome UI
  • 33
    Great customer support
  • 18
    Ios support
  • 14
    Hipchat integration
  • 13
    SSH debug access
  • 11
    Free for Open Source
  • 6
    Mobile support
  • 5
    Nodejs support
  • 5
    Bitbucket integration
  • 5
    YAML configuration
  • 4
    AWS CodeDeploy integration
  • 3
    Free for Github private repo
  • 3
    Great support
  • 2
    Clojurescript
  • 2
    Continuous Deployment
  • 2
    Parallelism
  • 2
    Clojure
  • 2
    OSX support
  • 2
    Simple, clean UI
  • 1
    Unstable
  • 1
    Ci
  • 1
    Favorite
  • 1
    Helpful documentation
  • 1
    Autoscaling
  • 1
    Extremely configurable
  • 1
    Works
  • 1
    Android support
  • 1
    Fair pricing
  • 1
    All inclusive testing
  • 1
    Japanese in rspec comment appears OK
  • 1
    Build PR Branch Only
  • 1
    So circular
  • 1
    Easy setup, easy to understand, fast and reliable
  • 1
    Parallel builds for slow test suites
  • 1
    Easy setup. 2.0 is fast!
  • 1
    Easy to deploy to private servers
  • 1
    Really easy to use
  • 0
    Stable
CONS OF CIRCLECI
  • 12
    Unstable
  • 6
    Scammy pricing structure
  • 0
    Aggressive Github permissions

related CircleCI posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Tim Abbott
Shared insights
on
Travis CITravis CICircleCICircleCI
at

We actually started out on Travis CI, but we've migrated our main builds to CircleCI, and it's been a huge improvement.

The reason it's been a huge improvement is that Travis CI has a fundamentally bad design for their images, where they start with a standard base Linux image containing tons of packages (several versions of postgres, every programming language environment, etc). This is potentially nice for the "get builds for a small project running quickly" use case, but it's a total disaster for a larger project that needs a decent number of dependencies and cares about the performance and reliability of their build.

This issue is exacerbated by their networking infrastructure being unreliable; we usually saw over 1% of builds failing due to transient networking errors in Travis CI, even after we added retries to the most frequently failing operations like apt update or pip install. And they never install Ubuntu's point release updates to their images. So doing an apt update, apt install, or especially apt upgrade would take forever. We ended up writing code to actually uninstall many of their base packages and pin the versions of hundreds of others to get a semi-fast, semi-reliable build. It was infuriating.

The CircleCI v2.0 system has the right design for a CI system: we can customize the base image to start with any expensive-to-install packages we need for our build, and we can update that image if and when we want to. The end result is that when migrating, we were able to delete all the hacky optimizations mentioned above, while still ending up with a 50% faster build latency. And we've also had 5-10x fewer issues with networking-related flakes, which means one doesn't have to constantly check whether a build failure is actually due to an issue with the code under test or "just another networking flake".

See more
Jenkins logo

Jenkins

57.5K
49.1K
2.2K
An extendable open source continuous integration server
57.5K
49.1K
+ 1
2.2K
PROS OF JENKINS
  • 523
    Hosted internally
  • 469
    Free open source
  • 318
    Great to build, deploy or launch anything async
  • 243
    Tons of integrations
  • 211
    Rich set of plugins with good documentation
  • 111
    Has support for build pipelines
  • 68
    Easy setup
  • 66
    It is open-source
  • 53
    Workflow plugin
  • 13
    Configuration as code
  • 12
    Very powerful tool
  • 11
    Many Plugins
  • 10
    Continuous Integration
  • 10
    Great flexibility
  • 9
    Git and Maven integration is better
  • 8
    100% free and open source
  • 7
    Slack Integration (plugin)
  • 7
    Github integration
  • 6
    Self-hosted GitLab Integration (plugin)
  • 6
    Easy customisation
  • 5
    Pipeline API
  • 5
    Docker support
  • 4
    Fast builds
  • 4
    Hosted Externally
  • 4
    Excellent docker integration
  • 4
    Platform idnependency
  • 3
    AWS Integration
  • 3
    JOBDSL
  • 3
    It's Everywhere
  • 3
    Customizable
  • 3
    Can be run as a Docker container
  • 3
    It`w worked
  • 2
    Loose Coupling
  • 2
    NodeJS Support
  • 2
    Build PR Branch Only
  • 2
    Easily extendable with seamless integration
  • 2
    PHP Support
  • 2
    Ruby/Rails Support
  • 2
    Universal controller
CONS OF JENKINS
  • 13
    Workarounds needed for basic requirements
  • 10
    Groovy with cumbersome syntax
  • 8
    Plugins compatibility issues
  • 7
    Lack of support
  • 7
    Limited abilities with declarative pipelines
  • 5
    No YAML syntax
  • 4
    Too tied to plugins versions

related Jenkins posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Thierry Schellenbach

Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.

Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.

Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named “debug build” button, Travis is now the clear winner. It’s easy to use and free for open source, with no need to maintain anything.

#ContinuousIntegration #CodeCollaborationVersionControl

See more
TeamCity logo

TeamCity

1.1K
1.1K
316
TeamCity is an ultimate Continuous Integration tool for professionals
1.1K
1.1K
+ 1
316
PROS OF TEAMCITY
  • 61
    Easy to configure
  • 37
    Reliable and high-quality
  • 32
    User friendly
  • 32
    On premise
  • 32
    Github integration
  • 18
    Great UI
  • 16
    Smart
  • 12
    Free for open source
  • 12
    Can run jobs in parallel
  • 8
    Crossplatform
  • 5
    Chain dependencies
  • 5
    Fully-functional out of the box
  • 4
    Great support by jetbrains
  • 4
    REST API
  • 4
    Projects hierarchy
  • 4
    100+ plugins
  • 3
    Personal notifications
  • 3
    Free for small teams
  • 3
    Build templates
  • 3
    Per-project permissions
  • 2
    Upload build artifacts
  • 2
    Smart build failure analysis and tracking
  • 2
    Ide plugins
  • 2
    GitLab integration
  • 2
    Artifact dependencies
  • 2
    Official reliable support
  • 2
    Build progress messages promoting from running process
  • 1
    Repository-stored, full settings dsl with ide support
  • 1
    Built-in artifacts repository
  • 1
    Powerful build chains / pipelines
  • 1
    TeamCity Professional is FREE
  • 0
    High-Availability
  • 0
    Hosted internally
CONS OF TEAMCITY
  • 3
    High costs for more than three build agents
  • 2
    Proprietary
  • 2
    User-friendly
  • 2
    User friendly

related TeamCity posts

Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
Sarah Elson
Product Growth at LambdaTest · | 4 upvotes · 756.7K views

@producthunt LambdaTest Selenium JavaScript Java Python PHP Cucumber TeamCity CircleCI With this new release of LambdaTest automation, you can run tests across an Online Selenium Grid of 2000+ browsers and OS combinations to perform cross browser testing. This saves you from the pain of maintaining the infrastructure and also saves you the licensing costs for browsers and operating systems. #testing #Seleniumgrid #Selenium #testautomation #automation #webdriver #producthunt hunted

See more
GitLab logo

GitLab

60.5K
51.8K
2.5K
Open source self-hosted Git management software
60.5K
51.8K
+ 1
2.5K
PROS OF GITLAB
  • 508
    Self hosted
  • 430
    Free
  • 339
    Has community edition
  • 242
    Easy setup
  • 240
    Familiar interface
  • 137
    Includes many features, including ci
  • 113
    Nice UI
  • 84
    Good integration with gitlabci
  • 57
    Simple setup
  • 34
    Free private repository
  • 34
    Has an official mobile app
  • 31
    Continuous Integration
  • 22
    Open source, great ui (like github)
  • 18
    Slack Integration
  • 14
    Full CI flow
  • 11
    Free and unlimited private git repos
  • 10
    User, group, and project access management is simple
  • 9
    All in one (Git, CI, Agile..)
  • 8
    Built-in CI
  • 8
    Intuitive UI
  • 6
    Both public and private Repositories
  • 6
    Full DevOps suite with Git
  • 5
    Build/pipeline definition alongside code
  • 5
    CI
  • 5
    So easy to use
  • 5
    Integrated Docker Registry
  • 5
    It's powerful source code management tool
  • 4
    Issue system
  • 4
    Dockerized
  • 4
    Unlimited free repos & collaborators
  • 4
    Security and Stable
  • 4
    On-premises
  • 4
    It's fully integrated
  • 4
    Mattermost Chat client
  • 4
    Excellent
  • 3
    Great for team collaboration
  • 3
    Built-in Docker Registry
  • 3
    Low maintenance cost due omnibus-deployment
  • 3
    I like the its runners and executors feature
  • 3
    Free private repos
  • 3
    Because is the best remote host for git repositories
  • 3
    Not Microsoft Owned
  • 3
    Opensource
  • 2
    Groups of groups
  • 2
    Powerful software planning and maintaining tools
  • 2
    Review Apps feature
  • 2
    Kubernetes integration with GitLab CI
  • 2
    It includes everything I need, all packaged with docker
  • 2
    Multilingual interface
  • 2
    HipChat intergration
  • 2
    Powerful Continuous Integration System
  • 2
    One-click install through DigitalOcean
  • 2
    The dashboard with deployed environments
  • 2
    Native CI
  • 2
    Many private repo
  • 2
    Kubernetes Integration
  • 2
    Published IP list for whitelisting (gl-infra#434)
  • 2
    Wounderful
  • 2
    Beautiful
  • 1
    Supports Radius/Ldap & Browser Code Edits
CONS OF GITLAB
  • 28
    Slow ui performance
  • 8
    Introduce breaking bugs every release
  • 6
    Insecure (no published IP list for whitelisting)
  • 2
    Built-in Docker Registry
  • 1
    Review Apps feature

related GitLab posts

Tim Abbott
Shared insights
on
GitHubGitHubGitLabGitLab
at

I have mixed feelings on GitHub as a product and our use of it for the Zulip open source project. On the one hand, I do feel that being on GitHub helps people discover Zulip, because we have enough stars (etc.) that we rank highly among projects on the platform. and there is a definite benefit for lowering barriers to contribution (which is important to us) that GitHub has such a dominant position in terms of what everyone has accounts with.

But even ignoring how one might feel about their new corporate owner (MicroSoft), in a lot of ways GitHub is a bad product for open source projects. Years after the "Dear GitHub" letter, there are still basic gaps in its issue tracker:

  • You can't give someone permission to label/categorize issues without full write access to a project (including ability to merge things to master, post releases, etc.).
  • You can't let anyone with a GitHub account self-assign issues to themselves.
  • Many more similar issues.

It's embarrassing, because I've talked to GitHub product managers at various open source events about these things for 3 years, and they always agree the thing is important, but then nothing ever improves in the Issues product. Maybe the new management at MicroSoft will fix their product management situation, but if not, I imagine we'll eventually do the migration to GitLab.

We have a custom bot project, http://github.com/zulip/zulipbot, to deal with some of these issues where possible, and every other large project we talk to does the same thing, more or less.

See more
Joshua Dean Küpper
CEO at Scrayos UG (haftungsbeschränkt) · | 20 upvotes · 694.7K views

We use GitLab CI because of the great native integration as a part of the GitLab framework and the linting-capabilities it offers. The visualization of complex pipelines and the embedding within the project overview made Gitlab CI even more convenient. We use it for all projects, all deployments and as a part of GitLab Pages.

While we initially used the Shell-executor, we quickly switched to the Docker-executor and use it exclusively now.

We formerly used Jenkins but preferred to handle everything within GitLab . Aside from the unification of our infrastructure another motivation was the "configuration-in-file"-approach, that Gitlab CI offered, while Jenkins support of this concept was very limited and users had to resort to using the webinterface. Since the file is included within the repository, it is also version controlled, which was a huge plus for us.

See more
Bamboo logo

Bamboo

506
547
17
Tie automated builds, tests, and releases together in a single workflow
506
547
+ 1
17
PROS OF BAMBOO
  • 10
    Integrates with other Atlassian tools
  • 4
    Great notification scheme
  • 2
    Great UI
  • 1
    Has Deployment Projects
CONS OF BAMBOO
  • 6
    Expensive
  • 1
    Low community support
  • 1
    Bad UI
  • 1
    Bad integration with docker

related Bamboo posts

xie zhifeng
Shared insights
on
BambooBambooJenkinsJenkinsGitLabGitLab
at

I am choosing a DevOps toolset for my team. GitLab is open source and quite cloud-native. Jenkins has a very popular environment system but old-style technicals. Bamboo is very nice but integrated only with Atlassian products.

See more
GitLab CI logo

GitLab CI

2.3K
1.6K
75
GitLab integrated CI to test, build and deploy your code
2.3K
1.6K
+ 1
75
PROS OF GITLAB CI
  • 22
    Robust CI with awesome Docker support
  • 13
    Simple configuration
  • 9
    All in one solution
  • 7
    Source Control and CI in one place
  • 5
    Integrated with VCS on commit
  • 5
    Free and open source
  • 5
    Easy to configure own build server i.e. GitLab-Runner
  • 2
    Hosted internally
  • 1
    Built-in Docker Registry
  • 1
    Built-in support of Review Apps
  • 1
    Pipeline could be started manually
  • 1
    Enable or disable pipeline by using env variables
  • 1
    Gitlab templates could be shared across logical group
  • 1
    Easy to setup the dedicated runner to particular job
  • 1
    Built-in support of Kubernetes
CONS OF GITLAB CI
  • 2
    Works best with GitLab repositories

related GitLab CI posts

Joshua Dean Küpper
CEO at Scrayos UG (haftungsbeschränkt) · | 20 upvotes · 694.7K views

We use GitLab CI because of the great native integration as a part of the GitLab framework and the linting-capabilities it offers. The visualization of complex pipelines and the embedding within the project overview made Gitlab CI even more convenient. We use it for all projects, all deployments and as a part of GitLab Pages.

While we initially used the Shell-executor, we quickly switched to the Docker-executor and use it exclusively now.

We formerly used Jenkins but preferred to handle everything within GitLab . Aside from the unification of our infrastructure another motivation was the "configuration-in-file"-approach, that Gitlab CI offered, while Jenkins support of this concept was very limited and users had to resort to using the webinterface. Since the file is included within the repository, it is also version controlled, which was a huge plus for us.

See more
Sebastian Dellwig
Solution Architect at Porsche Digital GmbH · | 6 upvotes · 198K views
Shared insights
on
GitLab CIGitLab CICircleCICircleCICodeshipCodeship

We are using GitLab CI and were very happy with it. The integration of all tools like CI/CD, tickets, etc makes it very easy to stay on top of things. But be aware, Gitlab currently does not have iOS build support. So if you want to exchange that for CircleCI / Codeship to have to invest some effort. We are using a managed Mac OS device and installed the Gitlab runner there, to have iOS builds.

See more
GitHub Actions logo

GitHub Actions

21.9K
2.4K
27
Automate your workflow from idea to production
21.9K
2.4K
+ 1
27
PROS OF GITHUB ACTIONS
  • 8
    Integration with GitHub
  • 5
    Free
  • 3
    Easy to duplicate a workflow
  • 3
    Ready actions in Marketplace
  • 2
    Configs stored in .github
  • 2
    Docker Support
  • 2
    Read actions in Marketplace
  • 1
    Active Development Roadmap
  • 1
    Fast
CONS OF GITHUB ACTIONS
  • 5
    Lacking [skip ci]
  • 4
    Lacking allow failure
  • 3
    Lacking job specific badges
  • 2
    No ssh login to servers
  • 1
    No Deployment Projects
  • 1
    No manual launch

related GitHub Actions posts

Somnath Mahale
Engineering Leader at Altimetrik Corp. · | 8 upvotes · 1.7M views

I am in the process of evaluating CircleCI, Drone.io, and Github Actions to cover my #CI/ CD needs. I would appreciate your advice on comparative study w.r.t. attributes like language-Inclusive support, code-base integration, performance, cost, maintenance, support, ease of use, ability to deal with big projects, etc. based on actual industry experience.

Thanks in advance!

See more
Omkar Kulkarni
DevOps Engineer at LTI · | 3 upvotes · 1.5M views
Shared insights
on
GitLabGitLabGitHub ActionsGitHub Actions

Hello Everyone, Can some please help me to understand the difference between GitHub Actions And GitLab I have been trying to understand them, but still did not get how exactly they are different.

See more
Travis CI logo

Travis CI

26K
6.6K
1.7K
A hosted continuous integration service for open source and private projects
26K
6.6K
+ 1
1.7K
PROS OF TRAVIS CI
  • 506
    Github integration
  • 388
    Free for open source
  • 271
    Easy to get started
  • 191
    Nice interface
  • 162
    Automatic deployment
  • 72
    Tutorials for each programming language
  • 40
    Friendly folks
  • 29
    Support for multiple ruby versions
  • 28
    Osx support
  • 24
    Easy handling of secret keys
  • 6
    Fast builds
  • 4
    Support for students
  • 3
    The best tool for Open Source CI
  • 3
    Hosted
  • 3
    Build Matrices
  • 2
    Github Pull Request build
  • 2
    Straightforward Github/Coveralls integration
  • 2
    Easy of Usage
  • 2
    Integrates with everything
  • 1
    Caching resolved artifacts
  • 1
    Docker support
  • 1
    Great Documentation
  • 1
    Build matrix
  • 1
    No-brainer for CI
  • 1
    Debug build workflow
  • 1
    Ubuntu trusty is not supported
  • 1
    Free for students
  • 1
    Configuration saved with project repository
  • 1
    Multi-threaded run
  • 1
    Hipchat Integration
  • 0
    Perfect
CONS OF TRAVIS CI
  • 8
    Can't be hosted insternally
  • 3
    Feature lacking
  • 3
    Unstable
  • 2
    Incomplete documentation for all platforms

related Travis CI posts

Thierry Schellenbach

Releasing new versions of our services is done by Travis CI. Travis first runs our test suite. Once it passes, it publishes a new release binary to GitHub.

Common tasks such as installing dependencies for the Go project, or building a binary are automated using plain old Makefiles. (We know, crazy old school, right?) Our binaries are compressed using UPX.

Travis has come a long way over the past years. I used to prefer Jenkins in some cases since it was easier to debug broken builds. With the addition of the aptly named “debug build” button, Travis is now the clear winner. It’s easy to use and free for open source, with no need to maintain anything.

#ContinuousIntegration #CodeCollaborationVersionControl

See more
Tim Abbott
Shared insights
on
Travis CITravis CICircleCICircleCI
at

We actually started out on Travis CI, but we've migrated our main builds to CircleCI, and it's been a huge improvement.

The reason it's been a huge improvement is that Travis CI has a fundamentally bad design for their images, where they start with a standard base Linux image containing tons of packages (several versions of postgres, every programming language environment, etc). This is potentially nice for the "get builds for a small project running quickly" use case, but it's a total disaster for a larger project that needs a decent number of dependencies and cares about the performance and reliability of their build.

This issue is exacerbated by their networking infrastructure being unreliable; we usually saw over 1% of builds failing due to transient networking errors in Travis CI, even after we added retries to the most frequently failing operations like apt update or pip install. And they never install Ubuntu's point release updates to their images. So doing an apt update, apt install, or especially apt upgrade would take forever. We ended up writing code to actually uninstall many of their base packages and pin the versions of hundreds of others to get a semi-fast, semi-reliable build. It was infuriating.

The CircleCI v2.0 system has the right design for a CI system: we can customize the base image to start with any expensive-to-install packages we need for our build, and we can update that image if and when we want to. The end result is that when migrating, we were able to delete all the hacky optimizations mentioned above, while still ending up with a 50% faster build latency. And we've also had 5-10x fewer issues with networking-related flakes, which means one doesn't have to constantly check whether a build failure is actually due to an issue with the code under test or "just another networking flake".

See more