StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Utilities
  3. Background Jobs
  4. Message Queue
  5. Kafka vs SQLite

Kafka vs SQLite

OverviewDecisionsComparisonAlternatives

Overview

Kafka
Kafka
Stacks24.2K
Followers22.3K
Votes607
GitHub Stars31.2K
Forks14.8K
SQLite
SQLite
Stacks19.9K
Followers15.2K
Votes535

Kafka vs SQLite: What are the differences?

Introduction

In this article, we will discuss the key differences between Kafka and SQLite. Both Kafka and SQLite are popular technologies used for data storage and processing, but they have distinct features and use cases. Let's explore the main differences between these two technologies.

  1. Data Model: Kafka is a distributed event streaming platform that allows the handling of real-time streaming data. It follows a pub-sub model, where producers publish messages to topics, and consumers subscribe to these topics to process the messages. On the other hand, SQLite is an embedded relational database management system (RDBMS) that follows a traditional table-based data model for storing structured data.

  2. Scalability: Kafka is designed to handle high-throughput and high-volume data streams, making it suitable for large-scale data processing and analytics workflows. It can be easily scaled horizontally by adding more Kafka brokers to the cluster. In contrast, SQLite is a file-based database system that is primarily intended for small-scale applications or single-user scenarios. It does not provide built-in support for distributed data processing or horizontal scalability.

  3. Data Persistence: Kafka stores data in a distributed, durable, and fault-tolerant manner. It provides configurable retention policies to control the lifespan of data in topics and allows the replaying of events from the past. On the other hand, SQLite stores data in a single file on the local file system, which makes it suitable for embedded systems or local data storage scenarios. While SQLite offers durability and ACID compliance for single-node setups, it does not have the same level of fault tolerance and data replication capabilities as Kafka.

  4. Data Querying: Kafka does not provide a built-in querying mechanism or SQL-like interface for data retrieval. It primarily focuses on the real-time streaming of events. On the other hand, SQLite offers a powerful SQL engine that allows complex querying and manipulation of data using SQL statements. It supports various SQL features like joins, indexes, and transactions, making it well-suited for relational data analysis and reporting.

  5. Data Processing Paradigm: Kafka follows a distributed and fault-tolerant publish-subscribe model, making it an ideal choice for building data pipelines, streaming applications, and real-time data processing workflows. It supports continuous data ingestion and processing with low-latency. SQLite, on the other hand, is mainly designed for local data storage and retrieval. It is not optimized for real-time data processing or handling large data flows.

  6. Concurrency and Multi-User Access: Kafka is designed for concurrent access and can handle high levels of parallelism. It provides support for partitioning and parallel processing of data streams across multiple consumers. SQLite, on the other hand, is primarily suited for single-user applications or scenarios where concurrent read-write operations are not a concern. It does not have built-in mechanisms for concurrent access control or high levels of scalability in terms of multi-user access.

In summary, Kafka is a distributed event streaming platform focused on real-time data processing, scalability, and fault-tolerance, whereas SQLite is an embedded relational database system primarily suited for local data storage and small-scale applications with SQL querying capabilities.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Kafka, SQLite

viradiya
viradiya

Apr 12, 2020

Needs adviceonAngularJSAngularJSASP.NET CoreASP.NET CoreMSSQLMSSQL

We are going to develop a microservices-based application. It consists of AngularJS, ASP.NET Core, and MSSQL.

We have 3 types of microservices. Emailservice, Filemanagementservice, Filevalidationservice

I am a beginner in microservices. But I have read about RabbitMQ, but come to know that there are Redis and Kafka also in the market. So, I want to know which is best.

933k views933k
Comments
Dimelo
Dimelo

Nov 5, 2020

Needs adviceonSQLiteSQLiteMySQLMySQLPostgreSQLPostgreSQL

I need to add a DBMS to my stack, but I don't know which. I'm tempted to learn SQLite since it would be useful to me with its focus on local access without concurrency. However, doing so feels like I would be defeating the purpose of trying to expand my skill set since it seems like most enterprise applications have the opposite requirements.

To be able to apply what I learn to more projects, what should I try to learn? MySQL? PostgreSQL? Something else? Is there a comfortable middle ground between high applicability and ease of use?

670k views670k
Comments
Stephen
Stephen

Senior DevOps Engineer at Vital Beats

Nov 9, 2020

Review

A question you might want to think about is "What kind of experience do I want to gain, by using a DBMS?". If your aim is to have experience with SQL and any related libraries and frameworks for your language of choice (python, I think?), then it kind of doesn't matter too much which you pick so much. As others have said, SQLite would offer you the ability to very easily get started, and would give you a reasonably standard (if a little basic) SQL dialect to work with.

If your aim is actually to have a bit of "operational" experience, in terms of things like what command line tools might be available as standard for the DBMS, understanding how the DBMS handles multiple databases, when to use multiple schemas vs multiple databases, some basic privilege management etc. Then I would recommend PostgreSQL. SQLite's simplicity actually avoids most of these experiences, which is not helpful to you if that is what you hope to learn. MySQL has a few "quirks" to how it manages things like multiple databases, which may lead you to making less good decisions if you tried to take your experience over to different DBMS, especially in bigger enterprise roles. PostgreSQL is kind of a happy middle ground here, with the ability to start PostgreSQL servers via docker or docker-compose making the actual day-to-day management pretty easy, while still giving you experience of the kinds of considerations I have listed above.

At Vital Beats we make use of PostgreSQL, largely because it offers us a happy balance between good management and backup of data, and good standard command line tools, which is essential for us where we are deploying our solutions within Kubernetes / docker, and so more graphical tools are not always appropriate for us. PostgreSQL is also pretty universally supported in terms of language libraries and frameworks, without having to make compromises on how we want to store and layout our data.

316k views316k
Comments

Detailed Comparison

Kafka
Kafka
SQLite
SQLite

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Written at LinkedIn in Scala;Used by LinkedIn to offload processing of all page and other views;Defaults to using persistence, uses OS disk cache for hot data (has higher throughput then any of the above having persistence enabled);Supports both on-line as off-line processing
-
Statistics
GitHub Stars
31.2K
GitHub Stars
-
GitHub Forks
14.8K
GitHub Forks
-
Stacks
24.2K
Stacks
19.9K
Followers
22.3K
Followers
15.2K
Votes
607
Votes
535
Pros & Cons
Pros
  • 126
    High-throughput
  • 119
    Distributed
  • 92
    Scalable
  • 86
    High-Performance
  • 66
    Durable
Cons
  • 32
    Non-Java clients are second-class citizens
  • 29
    Needs Zookeeper
  • 9
    Operational difficulties
  • 5
    Terrible Packaging
Pros
  • 163
    Lightweight
  • 135
    Portable
  • 122
    Simple
  • 81
    Sql
  • 29
    Preinstalled on iOS and Android
Cons
  • 2
    Not for multi-process of multithreaded apps
  • 1
    Needs different binaries for each platform

What are some alternatives to Kafka, SQLite?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

RabbitMQ

RabbitMQ

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

Celery

Celery

Celery is an asynchronous task queue/job queue based on distributed message passing. It is focused on real-time operation, but supports scheduling as well.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase