Need advice about which tool to choose?Ask the StackShare community!

Kafka

23.4K
22K
+ 1
607
RabbitMQ

21.2K
18.6K
+ 1
557
Redis

59.2K
45.5K
+ 1
3.9K

Kafka vs RabbitMQ vs Redis: What are the differences?

Introduction

This Markdown code provides a comparison between Kafka, RabbitMQ, and Redis, highlighting their key differences in a concise manner.

  1. In terms of messaging model: Kafka uses a publish-subscribe model, where producers write messages to topics and consumers subscribe to these topics to receive messages. RabbitMQ uses a traditional message queue model, where producers send messages to queues and consumers consume messages from these queues. Redis, on the other hand, offers pub/sub functionality similar to Kafka but lacks advanced features like message persistence and fault-tolerance.

  2. In terms of scalability: Kafka is highly scalable and can handle large amounts of data and high message throughput. It is designed for high performance and low latency, making it suitable for use cases that require real-time processing. RabbitMQ is also scalable but to a lesser degree compared to Kafka. Redis, while capable of handling high loads, is primarily used for caching and small-scale pub/sub scenarios.

  3. In terms of message persistence: Kafka is designed for durability and provides long-term message retention by persisting messages to disks. RabbitMQ offers message persistence as well but it provides shorter-term storage options and relies on disk I/O for durability. Redis, however, does not offer built-in message persistence and relies on the client to handle it.

  4. In terms of message ordering: Kafka guarantees the order of messages within a partition, ensuring that messages are delivered in the order they were produced. RabbitMQ guarantees ordering within a single queue but not across multiple queues. Redis does not guarantee message ordering as it focuses more on performance and low latency.

  5. In terms of message delivery semantics: Kafka provides at-least-once delivery semantics, where messages are guaranteed to be delivered to consumers but duplicates may occur. RabbitMQ offers configurable delivery semantics, such as at-most-once, at-least-once, and exactly-once, depending on the configuration. Redis, however, does not provide built-in support for delivery semantics and it is up to the client to handle it.

  6. In terms of message persistence and fault-tolerance: Kafka is designed to be highly fault-tolerant with built-in replication and distributed commit logs. It provides guarantees for message durability and fault tolerance in case of node failures. RabbitMQ offers basic fault-tolerance capabilities through clustering and mirroring, but it lacks the same level of fault-tolerance as Kafka. Redis, on the other hand, does not provide built-in fault-tolerance mechanisms and is primarily used for caching purposes.

In summary, Kafka excels in handling large amounts of data and high message throughput with strong durability and fault-tolerance capabilities. RabbitMQ offers good scalability and flexible delivery semantics. Redis is suitable for caching and small-scale pub/sub scenarios, but lacks advanced features like message persistence and fault-tolerance.

Advice on Kafka, RabbitMQ, and Redis
Pulkit Sapra
Needs advice
on
Amazon SQSAmazon SQSKubernetesKubernetes
and
RabbitMQRabbitMQ

Hi! I am creating a scraping system in Django, which involves long running tasks between 1 minute & 1 Day. As I am new to Message Brokers and Task Queues, I need advice on which architecture to use for my system. ( Amazon SQS, RabbitMQ, or Celery). The system should be autoscalable using Kubernetes(K8) based on the number of pending tasks in the queue.

See more
Replies (1)
Anis Zehani
Recommends
on
KafkaKafka

Hello, i highly recommend Apache Kafka, to me it's the best. You can deploy it in cluster mode inside K8S, thus you can have a Highly available system (also auto scalable).

Good luck

See more
Needs advice
on
CeleryCelery
and
RabbitMQRabbitMQ

I am just a beginner at these two technologies.

Problem statement: I am getting lakh of users from the sequel server for whom I need to create caches in MongoDB by making different REST API requests.

Here these users can be treated as messages. Each REST API request is a task.

I am confused about whether I should go for RabbitMQ alone or Celery.

If I have to go with RabbitMQ, I prefer to use python with Pika module. But the challenge with Pika is, it is not thread-safe. So I am not finding a way to execute a lakh of API requests in parallel using multiple threads using Pika.

If I have to go with Celery, I don't know how I can achieve better scalability in executing these API requests in parallel.

See more
Replies (1)
Recommends
on
rqrqRedisRedis

For large amounts of small tasks and caches I have had good luck with Redis and RQ. I have not personally used celery but I am fairly sure it would scale well, and I have not used RabbitMQ for anything besides communication between services. If you prefer python my suggestions should feel comfortable.

Sorry I do not have a more information

See more
Meili Triantafyllidi
Software engineer at Digital Science · | 6 upvotes · 471.6K views
Needs advice
on
Amazon SQSAmazon SQSRabbitMQRabbitMQ
and
ZeroMQZeroMQ

Hi, we are in a ZMQ set up in a push/pull pattern, and we currently start to have more traffic and cases that the service is unavailable or stuck. We want to: * Not loose messages in services outages * Safely restart service without losing messages (ZeroMQ seems to need to close the socket in the receiver before restart manually)

Do you have experience with this setup with ZeroMQ? Would you suggest RabbitMQ or Amazon SQS (we are in AWS setup) instead? Something else?

Thank you for your time

See more
Replies (2)
Shishir Pandey
Recommends
on
RabbitMQRabbitMQ

ZeroMQ is fast but you need to build build reliability yourself. There are a number of patterns described in the zeromq guide. I have used RabbitMQ before which gives lot of functionality out of the box, you can probably use the worker queues example from the tutorial, it can also persists messages in the queue.

I haven't used Amazon SQS before. Another tool you could use is Kafka.

See more
Kevin Deyne
Principal Software Engineer at Accurate Background · | 5 upvotes · 213.5K views
Recommends
on
RabbitMQRabbitMQ

Both would do the trick, but there are some nuances. We work with both.

From the sound of it, your main focus is "not losing messages". In that case, I would go with RabbitMQ with a high availability policy (ha-mode=all) and a main/retry/error queue pattern.

Push messages to an exchange, which sends them to the main queue. If an error occurs, push the errored out message to the retry exchange, which forwards it to the retry queue. Give the retry queue a x-message-ttl and set the main exchange as a dead-letter-exchange. If your message has been retried several times, push it to the error exchange, where the message can remain until someone has time to look at it.

This is a very useful and resilient pattern that allows you to never lose messages. With the high availability policy, you make sure that if one of your rabbitmq nodes dies, another can take over and messages are already mirrored to it.

This is not really possible with SQS, because SQS is a lot more focused on throughput and scaling. Combined with SNS it can do interesting things like deduplication of messages and such. That said, one thing core to its design is that messages have a maximum retention time. The idea is that a message that has stayed in an SQS queue for a while serves no more purpose after a while, so it gets removed - so as to not block up any listener resources for a long time. You can also set up a DLQ here, but these similarly do not hold onto messages forever. Since you seem to depend on messages surviving at all cost, I would suggest that the scaling/throughput benefit of SQS does not outweigh the difference in approach to messages there.

See more
André Almeida
Technology Manager at GS1 Portugal - Codipor · | 5 upvotes · 435.3K views
Needs advice
on
Azure Service BusAzure Service Bus
and
RabbitMQRabbitMQ

Hello dear developers, our company is starting a new project for a new Web App, and we are currently designing the Architecture (we will be using .NET Core). We want to embark on something new, so we are thinking about migrating from a monolithic perspective to a microservices perspective. We wish to containerize those microservices and make them independent from each other. Is it the best way for microservices to communicate with each other via ESB, or is there a new way of doing this? Maybe complementing with an API Gateway? Can you recommend something else different than the two tools I provided?

We want something good for Cost/Benefit; performance should be high too (but not the primary constraint).

Thank you very much in advance :)

See more
Replies (2)

A Pro of Azure Service Bus is reliability and persistence: you can send message when receiver is offline; receiver can read it when it back online. A Cons is costs and message size. You can consider also SignalR

See more
Recommends

There are many different messaging frameworks available for IPC use. It's not really a question of how "new" the technology is, but what you need it to do. Azure Service Bus can be a great service to use, but it can also take a lot of effort to administrate and maintain that can make it costly to use unless you need the more advanced features it offers for routing, sequencing, delivery, etc. I would recommend checking out this link to get a basic idea of different messaging architectures. These only cover Azure services, but there are many other solutions that use similar architectural models.

https://docs.microsoft.com/en-us/azure/event-grid/compare-messaging-services

See more
Needs advice
on
KafkaKafkaRabbitMQRabbitMQ
and
RedisRedis

We are going to develop a microservices-based application. It consists of AngularJS, ASP.NET Core, and MSSQL.

We have 3 types of microservices. Emailservice, Filemanagementservice, Filevalidationservice

I am a beginner in microservices. But I have read about RabbitMQ, but come to know that there are Redis and Kafka also in the market. So, I want to know which is best.

See more
Replies (4)
Maheedhar Aluri
Recommends
on
KafkaKafka

Kafka is an Enterprise Messaging Framework whereas Redis is an Enterprise Cache Broker, in-memory database and high performance database.Both are having their own advantages, but they are different in usage and implementation. Now if you are creating microservices check the user consumption volumes, its generating logs, scalability, systems to be integrated and so on. I feel for your scenario initially you can go with KAFKA bu as the throughput, consumption and other factors are scaling then gradually you can add Redis accordingly.

See more
Recommends
on
AngularAngular

I first recommend that you choose Angular over AngularJS if you are starting something new. AngularJs is no longer getting enhancements, but perhaps you meant Angular. Regarding microservices, I recommend considering microservices when you have different development teams for each service that may want to use different programming languages and backend data stores. If it is all the same team, same code language, and same data store I would not use microservices. I might use a message queue, in which case RabbitMQ is a good one. But you may also be able to simply write your own in which you write a record in a table in MSSQL and one of your services reads the record from the table and processes it. The most challenging part of doing it yourself is writing a service that does a good job of reading the queue without reading the same message multiple times or missing a message; and that is where RabbitMQ can help.

See more
Amit Mor
Software Architect at Payoneer · | 3 upvotes · 808.3K views
Recommends
on
KafkaKafka

I think something is missing here and you should consider answering it to yourself. You are building a couple of services. Why are you considering event-sourcing architecture using Message Brokers such as the above? Won't a simple REST service based arch suffice? Read about CQRS and the problems it entails (state vs command impedance for example). Do you need Pub/Sub or Push/Pull? Is queuing of messages enough or would you need querying or filtering of messages before consumption? Also, someone would have to manage these brokers (unless using managed, cloud provider based solution), automate their deployment, someone would need to take care of backups, clustering if needed, disaster recovery, etc. I have a good past experience in terms of manageability/devops of the above options with Kafka and Redis, not so much with RabbitMQ. Both are very performant. But also note that Redis is not a pure message broker (at time of writing) but more of a general purpose in-memory key-value store. Kafka nowadays is much more than a distributed message broker. Long story short. In my taste, you should go with a minialistic approach and try to avoid either of them if you can, especially if your architecture does not fall nicely into event sourcing. If not I'd examine Kafka. If you need more capabilities than I'd consider Redis and use it for all sorts of other things such as a cache.

See more
Recommends
on
NATSNATS

We found that the CNCF landscape is a good advisor when working going into the cloud / microservices space: https://landscape.cncf.io/fullscreen=yes. When choosing a technology one important criteria to me is if it is cloud native or not. Neither Redis, RabbitMQ nor Kafka is cloud native. The try to adapt but will be replaced eventually with technologies that are cloud native.

We have gone with NATS and have never looked back. We haven't spend a single minute on server maintainance in the last year and the setup of a cluster is way too easy. With the new features NATS incorporates now (and the ones still on the roadmap) it is already and will be sooo much mure than Redis, RabbitMQ and Kafka are. It can replace service discovery, load balancing, global multiclusters and failover, etc, etc.

Your thought might be: But I don't need all of that! Well, at the same time it is much more leightweight than Redis, RabbitMQ and especially Kafka.

See more
Needs advice
on
RabbitMQRabbitMQ
and
RedisRedis

Hello there, We're developing a team chat application which would consist of direct (one-to-one) conversations and channel (group) conversations. I'm not the developer (of course), but my team suggested to go with Redis.

I've seen tech stacks of BIG team chat applications like Slack and Flock...but they haven't used RabbitMQ and used Redis instead.

A quick question, what's a good choice to go with for RabbitMQ or Redis for a message queue system in our case?

See more
Replies (2)
Recommends
on
RabbitMQRabbitMQ

This is of course determined by the needs of your application. It is important how many of your estimated instant users in your application will be. Also, the features of the application will affect the architecture of the application. For example, if the message data would be processed on the server, I would prefer a distributed server solution such as akka actor with the rabbitmq cluster. I would definitely use Redis. Both technologies are incomparable lanes. Redis is a database and its purpose is to process data from a different memory with the memory used by the code running on the server. Rabbit is a messaging queue system. It contributes to the architecture in a different dimension. Performance and stability are keywords.

See more
Andres Paredes
Lead Senior Software Engineer at InTouch Technology · | 3 upvotes · 20.4K views
Recommends
on
RabbitMQRabbitMQ

Each tool supports different use cases. RabbitMQ is a middleware peace supporting message driven reqs like you are trying to accomplish and Redis, on the other hand, allows to store data if performance, cache is important. If we are taking about a message queue system approach you could use RabbitMQ, Amazon SNS/SQS or Apache Kafka

See more
Needs advice
on
DjangoDjangoKafkaKafka
and
RedisRedis

I'm building a website where users can participate, like and dislike any given challenge.

Problem : If 10k or 1 million users join the given challenge at a time it can cause a race condition in my database MySQL and in also Redis.

What I want : Aggregating joined participated users, likes and dislikes.

Solution : I'm thinking about using Kafka as a Queue message broker then users event one by one saving into Redis, database and aggregate them.

One problem is also here saving and doing aggregate takes time now; how can I show users they have successfully joined the challenge?

One solution is that when a user joins the challenge I send a request to the Kafka queue then update the current user UI and show a success message (not updating the other users' joined messages to current user because I am not using Websockets)

Other App example Take the same example of https://stackshare.io posts. On posts users can like, dislike and comments.

Estimated users : 1 million Stack : Django, Mysql, Redis and Kafka

Questions

  • How I can manage these kinds of things?
  • How do big tech companies handle this?
  • Where am I right or wrong?
  • Are there other tools that can help me in this situation?
  • I am using locks in Redis when total like, dislike and joined users increment or decrement. Should I be doing this? Is it the same for transactions in MySQL?

I need the best approach to handle this situation that can also be scalable.

Thanks in advance for reading my post and giving me suggestions on this. ☺️

See more
Replies (1)
Oirere Jr.
Software Engineeer at Serftre Inc · | 4 upvotes · 20.8K views
Recommends
on
KafkaKafka

Consider using SQL support on Apache Pinot, which is an online analytic processing datastore which can write complex SQL queries and also join different tables in Pinot with those in other datastores. Pinot enables you to build dashboards for quick analysis and reporting on aggregated data.

See more
Pramod Nikam
Co Founder at Usability Designs · | 2 upvotes · 542.9K views
Needs advice
on
Apache ThriftApache ThriftKafkaKafka
and
NSQNSQ

I am looking into IoT World Solution where we have MQTT Broker. This MQTT Broker Sits in one of the Data Center. We are doing a lot of Alert and Alarm related processing on that Data, Currently, we are looking into Solution which can do distributed persistence of log/alert primarily on remote Disk.

Our primary need is to use lightweight where operational complexity and maintenance costs can be significantly reduced. We want to do it on-premise so we are not considering cloud solutions.

We looked into the following alternatives:

Apache Kafka - Great choice but operation and maintenance wise very complex. Rabbit MQ - High availability is the issue, Apache Pulsar - Operational Complexity. NATS - Absence of persistence. Akka Streams - Big learning curve and operational streams.

So we are looking into a lightweight library that can do distributed persistence preferably with publisher and subscriber model. Preferable on JVM stack.

See more
Replies (1)
Naresh Kancharla
Staff Engineer at Nutanix · | 4 upvotes · 540.3K views
Recommends
on
KafkaKafka

Kafka is best fit here. Below are the advantages with Kafka ACLs (Security), Schema (protobuf), Scale, Consumer driven and No single point of failure.

Operational complexity is manageable with open source monitoring tools.

See more
Needs advice
on
KafkaKafka
and
RabbitMQRabbitMQ

Our backend application is sending some external messages to a third party application at the end of each backend (CRUD) API call (from UI) and these external messages take too much extra time (message building, processing, then sent to the third party and log success/failure), UI application has no concern to these extra third party messages.

So currently we are sending these third party messages by creating a new child thread at end of each REST API call so UI application doesn't wait for these extra third party API calls.

I want to integrate Apache Kafka for these extra third party API calls, so I can also retry on failover third party API calls in a queue(currently third party messages are sending from multiple threads at the same time which uses too much processing and resources) and logging, etc.

Question 1: Is this a use case of a message broker?

Question 2: If it is then Kafka vs RabitMQ which is the better?

See more
Replies (4)
Tarun Batra
Senior Software Developer at Okta · | 7 upvotes · 758.2K views
Recommends
on
RabbitMQRabbitMQ

RabbitMQ is great for queuing and retrying. You can send the requests to your backend which will further queue these requests in RabbitMQ (or Kafka, too). The consumer on the other end can take care of processing . For a detailed analysis, check this blog about choosing between Kafka and RabbitMQ.

See more
Trevor Rydalch
Software Engineer at InsideSales.com · | 6 upvotes · 758K views
Recommends
on
RabbitMQRabbitMQ

Well, first off, it's good practice to do as little non-UI work on the foreground thread as possible, regardless of whether the requests take a long time. You don't want the UI thread blocked.

This sounds like a good use case for RabbitMQ. Primarily because you don't need each message processed by more than one consumer. If you wanted to process a single message more than once (say for different purposes), then Apache Kafka would be a much better fit as you can have multiple consumer groups consuming from the same topics independently.

Have your API publish messages containing the data necessary for the third-party request to a Rabbit queue and have consumers reading off there. If it fails, you can either retry immediately, or publish to a deadletter queue where you can reprocess them whenever you want (shovel them back into the regular queue).

See more
Recommends
on
RabbitMQRabbitMQ

In my opinion RabbitMQ fits better in your case because you don’t have order in queue. You can process your messages in any order. You don’t need to store the data what you sent. Kafka is a persistent storage like the blockchain. RabbitMQ is a message broker. Kafka is not a good solution for the system with confirmations of the messages delivery.

See more
Guillaume Maka
Full Stack Web Developer · | 2 upvotes · 757.2K views
Recommends
on
RabbitMQRabbitMQ

As far as I understand, Kafka is a like a persisted event state manager where you can plugin various source of data and transform/query them as event via a stream API. Regarding your use case I will consider using RabbitMQ if your intent is to implement service inter-communication kind of thing. RabbitMQ is a good choice for one-one publisher/subscriber (or consumer) and I think you can also have multiple consumers by configuring a fanout exchange. RabbitMQ provide also message retries, message cancellation, durable queue, message requeue, message ACK....

See more
Needs advice
on
KafkaKafkaRabbitMQRabbitMQ
and
RedisRedis

Hello! [Client sends live video frames -> Server computes and responds the result] Web clients send video frames from their webcam then on the back we need to run them through some algorithm and send the result back as a response. Since everything will need to work in a live mode, we want something fast and also suitable for our case (as everyone needs). Currently, we are considering RabbitMQ for the purpose, but recently I have noticed that there is Redis and Kafka too. Could you please help us choose among them or anything more suitable beyond these guys. I think something similar to our product would be people using their webcam to get Snapchat masks on their faces, and the calculated face points are responded on from the server, then the client-side draw the mask on the user's face. I hope this helps. Thank you!

See more
Replies (3)
Jordi Martínez
Senior software architect at Bootloader · | 3 upvotes · 707.3K views
Recommends
on
KafkaKafka

For your use case, the tool that fits more is definitely Kafka. RabbitMQ was not invented to handle data streams, but messages. Plenty of them, of course, but individual messages. Redis is an in-memory database, which is what makes it so fast. Redis recently included features to handle data stream, but it cannot best Kafka on this, or at least not yet. Kafka is not also super fast, it also provides lots of features to help create software to handle those streams.

See more
Recommends
on
RabbitMQRabbitMQ

I've used all of them and Kafka is hard to set up and maintain. Mostly is a Java dinosaur that you can set up and. I've used it with Storm but that is another big dinosaur. Redis is mostly for caching. The queue mechanism is not very scalable for multiple processors. Depending on the speed you need to implement on the reliability I would use RabbitMQ. You can store the frames(if they are too big) somewhere else and just have a link to them. Moving data through any of these will increase cost of transportation. With Rabbit, you can always have multiple consumers and check for redundancy. Hope it clears out your thoughts!

See more
Recommends
on
RabbitMQRabbitMQ

For this kind of use case I would recommend either RabbitMQ or Kafka depending on the needs for scaling, redundancy and how you want to design it.

Kafka's true value comes into play when you need to distribute the streaming load over lot's of resources. If you were passing the video frames directly into the queue then you'd probably want to go with Kafka however if you can just pass a pointer to the frames then RabbitMQ should be fine and will be much simpler to run.

Bear in mind too that Kafka is a persistent log, not just a message bus so any data you feed into it is kept available until it expires (which is configurable). This can be useful if you have multiple clients reading from the queue with their own lifecycle but in your case it doesn't sound like that would be necessary. You could also use a RabbitMQ fanout exchange if you need that in the future.

See more
Decisions about Kafka, RabbitMQ, and Redis
Kirill Mikhailov

Maybe not an obvious comparison with Kafka, since Kafka is pretty different from rabbitmq. But for small service, Rabbit as a pubsub platform is super easy to use and pretty powerful. Kafka as an alternative was the original choice, but its really a kind of overkill for a small-medium service. Especially if you are not planning to use k8s, since pure docker deployment can be a pain because of networking setup. Google PubSub was another alternative, its actually pretty cheap, but I never tested it since Rabbit was matching really good for mailing/notification services.

See more
Mickael Alliel
DevOps Engineer at Rookout · | 4 upvotes · 450.7K views

In addition to being a lot cheaper, Google Cloud Pub/Sub allowed us to not worry about maintaining any more infrastructure that needed.

We moved from a self-hosted RabbitMQ over to CloudAMQP and decided that since we use GCP anyway, why not try their managed PubSub?

It is one of the better decisions that we made, and we can just focus about building more important stuff!

See more
Colin Chartier
Founder at Distributed Containers Inc. · | 4 upvotes · 35.7K views

We needed a centralized "job" processor for our CI runs, but continuously had issues with transactions across services:

INSERT INTO ci_jobs(...) VALUES (...) RETURNING id

redis-cli LPUSH $id

wasn't good enough, since a temporary inability to connect to redis would kill the run in a strange way.

Instead, I used postgres itself as the job server with PUBLISH / SUBSCRIBE and an atomic claiming mechanism using FOR UPDATE SKIP LOCKED using Postgres.

See the blog post below for more details:

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Kafka
Pros of RabbitMQ
Pros of Redis
  • 126
    High-throughput
  • 119
    Distributed
  • 92
    Scalable
  • 86
    High-Performance
  • 66
    Durable
  • 38
    Publish-Subscribe
  • 19
    Simple-to-use
  • 18
    Open source
  • 12
    Written in Scala and java. Runs on JVM
  • 9
    Message broker + Streaming system
  • 4
    KSQL
  • 4
    Avro schema integration
  • 4
    Robust
  • 3
    Suport Multiple clients
  • 2
    Extremely good parallelism constructs
  • 2
    Partioned, replayable log
  • 1
    Simple publisher / multi-subscriber model
  • 1
    Fun
  • 1
    Flexible
  • 235
    It's fast and it works with good metrics/monitoring
  • 80
    Ease of configuration
  • 60
    I like the admin interface
  • 52
    Easy to set-up and start with
  • 22
    Durable
  • 19
    Standard protocols
  • 19
    Intuitive work through python
  • 11
    Written primarily in Erlang
  • 9
    Simply superb
  • 7
    Completeness of messaging patterns
  • 4
    Reliable
  • 4
    Scales to 1 million messages per second
  • 3
    Better than most traditional queue based message broker
  • 3
    Distributed
  • 3
    Supports MQTT
  • 3
    Supports AMQP
  • 2
    Clear documentation with different scripting language
  • 2
    Better routing system
  • 2
    Inubit Integration
  • 2
    Great ui
  • 2
    High performance
  • 2
    Reliability
  • 2
    Open-source
  • 2
    Runs on Open Telecom Platform
  • 2
    Clusterable
  • 2
    Delayed messages
  • 1
    Supports Streams
  • 1
    Supports STOMP
  • 1
    Supports JMS
  • 886
    Performance
  • 542
    Super fast
  • 513
    Ease of use
  • 444
    In-memory cache
  • 324
    Advanced key-value cache
  • 194
    Open source
  • 182
    Easy to deploy
  • 164
    Stable
  • 155
    Free
  • 121
    Fast
  • 42
    High-Performance
  • 40
    High Availability
  • 35
    Data Structures
  • 32
    Very Scalable
  • 24
    Replication
  • 22
    Great community
  • 22
    Pub/Sub
  • 19
    "NoSQL" key-value data store
  • 16
    Hashes
  • 13
    Sets
  • 11
    Sorted Sets
  • 10
    NoSQL
  • 10
    Lists
  • 9
    Async replication
  • 9
    BSD licensed
  • 8
    Bitmaps
  • 8
    Integrates super easy with Sidekiq for Rails background
  • 7
    Keys with a limited time-to-live
  • 7
    Open Source
  • 6
    Lua scripting
  • 6
    Strings
  • 5
    Awesomeness for Free
  • 5
    Hyperloglogs
  • 4
    Transactions
  • 4
    Outstanding performance
  • 4
    Runs server side LUA
  • 4
    LRU eviction of keys
  • 4
    Feature Rich
  • 4
    Written in ANSI C
  • 4
    Networked
  • 3
    Data structure server
  • 3
    Performance & ease of use
  • 2
    Dont save data if no subscribers are found
  • 2
    Automatic failover
  • 2
    Easy to use
  • 2
    Temporarily kept on disk
  • 2
    Scalable
  • 2
    Existing Laravel Integration
  • 2
    Channels concept
  • 2
    Object [key/value] size each 500 MB
  • 2
    Simple

Sign up to add or upvote prosMake informed product decisions

Cons of Kafka
Cons of RabbitMQ
Cons of Redis
  • 32
    Non-Java clients are second-class citizens
  • 29
    Needs Zookeeper
  • 9
    Operational difficulties
  • 5
    Terrible Packaging
  • 9
    Too complicated cluster/HA config and management
  • 6
    Needs Erlang runtime. Need ops good with Erlang runtime
  • 5
    Configuration must be done first, not by your code
  • 4
    Slow
  • 15
    Cannot query objects directly
  • 3
    No secondary indexes for non-numeric data types
  • 1
    No WAL

Sign up to add or upvote consMake informed product decisions

- No public GitHub repository available -

What is Kafka?

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.

What is RabbitMQ?

RabbitMQ gives your applications a common platform to send and receive messages, and your messages a safe place to live until received.

What is Redis?

Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams.

Need advice about which tool to choose?Ask the StackShare community!

Jobs that mention Kafka, RabbitMQ, and Redis as a desired skillset
LaunchDarkly
Oakland, California, United States
What companies use Kafka?
What companies use RabbitMQ?
What companies use Redis?

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Kafka?
What tools integrate with RabbitMQ?
What tools integrate with Redis?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

Dec 22 2021 at 5:41AM

Pinterest

MySQLKafkaDruid+3
3
597
Amazon S3KafkaZookeeper+5
8
1615
Mar 24 2021 at 12:57PM

Pinterest

GitJenkinsKafka+7
5
2191
What are some alternatives to Kafka, RabbitMQ, and Redis?
ActiveMQ
Apache ActiveMQ is fast, supports many Cross Language Clients and Protocols, comes with easy to use Enterprise Integration Patterns and many advanced features while fully supporting JMS 1.1 and J2EE 1.4. Apache ActiveMQ is released under the Apache 2.0 License.
Amazon Kinesis
Amazon Kinesis can collect and process hundreds of gigabytes of data per second from hundreds of thousands of sources, allowing you to easily write applications that process information in real-time, from sources such as web site click-streams, marketing and financial information, manufacturing instrumentation and social media, and operational logs and metering data.
Apache Spark
Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.
Akka
Akka is a toolkit and runtime for building highly concurrent, distributed, and resilient message-driven applications on the JVM.
Apache Storm
Apache Storm is a free and open source distributed realtime computation system. Storm makes it easy to reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch processing. Storm has many use cases: realtime analytics, online machine learning, continuous computation, distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it at over a million tuples processed per second per node. It is scalable, fault-tolerant, guarantees your data will be processed, and is easy to set up and operate.
See all alternatives