StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. Apache Flink vs Oracle

Apache Flink vs Oracle

OverviewDecisionsComparisonAlternatives

Overview

Oracle
Oracle
Stacks2.6K
Followers1.8K
Votes113
Apache Flink
Apache Flink
Stacks534
Followers879
Votes38
GitHub Stars25.4K
Forks13.7K

Apache Flink vs Oracle: What are the differences?

# Apache Flink vs Oracle

Apache Flink and Oracle are two distinct technologies with unique features and use cases in the realm of data processing and analytics. Understanding the key differences between them can help organizations make informed decisions about which platform best fits their requirements.

1. **Real-Time Processing**: Apache Flink is known for its ability to handle real-time data processing efficiently, providing low latency and high throughput. On the other hand, Oracle traditionally excels in batch processing and is less suited for real-time use cases.

2. **Distributed Computing**: Apache Flink is built for distributed computing, allowing it to scale horizontally across multiple nodes in a cluster. Oracle, while it does support parallel processing, may not offer the same level of scalability as Flink in distributed environments.

3. **Streaming Analytics**: Apache Flink is particularly well-suited for streaming analytics, where the processing of data occurs continuously in real time. Oracle, while capable of handling streaming data, may not have the same streaming-oriented features and performance optimizations as Flink.

4. **Community Support**: Apache Flink benefits from a strong open-source community that actively contributes to its development and provides support for users. Oracle, being a commercial product, may have dedicated customer support but may lack the same level of community-driven innovation and agility.

5. **Dynamic Data Pipelines**: Apache Flink allows for the creation of dynamic data pipelines that can adapt to changing requirements and data patterns. Oracle, while flexible in its own right, may not offer the same level of dynamicity and agility in building data pipelines.

6. **Integration with Ecosystem**: Apache Flink seamlessly integrates with other big data technologies like Apache Kafka, Hadoop, and more, making it well-suited for modern data processing architectures. Oracle, while offering its own ecosystem of tools, may not have the same level of integration and compatibility with external data sources and systems.

In Summary, Apache Flink and Oracle differ in their strengths in real-time processing, distributed computing, streaming analytics, community support, dynamic data pipelines, and ecosystem integration.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Oracle, Apache Flink

Nilesh
Nilesh

Technical Architect at Self Employed

Jul 8, 2020

Needs adviceonElasticsearchElasticsearchKafkaKafka

We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.

In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.

In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.

576k views576k
Comments
Daniel
Daniel

Data Engineer at Dimensigon

Jul 18, 2020

Decided

We have chosen Tibero over Oracle because we want to offer a PL/SQL-as-a-Service that the users can deploy in any Cloud without concerns from our website at some standard cost. With Oracle Database, developers would have to worry about what they implement and the related costs of each feature but the licensing model from Tibero is just 1 price and we have all features included, so we don't have to worry and developers using our SQLaaS neither. PostgreSQL would be open source. We have chosen Tibero over Oracle because we want to offer a PL/SQL that you can deploy in any Cloud without concerns. PostgreSQL would be the open source option but we need to offer an SQLaaS with encryption and more enterprise features in the background and best value option we have found, it was Tibero Database for PL/SQL-based applications.

496k views496k
Comments
Abigail
Abigail

Dec 6, 2019

Decided

In the field of bioinformatics, we regularly work with hierarchical and unstructured document data. Unstructured text data from PDFs, image data from radiographs, phylogenetic trees and cladograms, network graphs, streaming ECG data... none of it fits into a traditional SQL database particularly well. As such, we prefer to use document oriented databases.

MongoDB is probably the oldest component in our stack besides Javascript, having been in it for over 5 years. At the time, we were looking for a technology that could simply cache our data visualization state (stored in JSON) in a database as-is without any destructive normalization. MongoDB was the perfect tool; and has been exceeding expectations ever since.

Trivia fact: some of the earliest electronic medical records (EMRs) used a document oriented database called MUMPS as early as the 1960s, prior to the invention of SQL. MUMPS is still in use today in systems like Epic and VistA, and stores upwards of 40% of all medical records at hospitals. So, we saw MongoDB as something as a 21st century version of the MUMPS database.

540k views540k
Comments

Detailed Comparison

Oracle
Oracle
Apache Flink
Apache Flink

Oracle Database is an RDBMS. An RDBMS that implements object-oriented features such as user-defined types, inheritance, and polymorphism is called an object-relational database management system (ORDBMS). Oracle Database has extended the relational model to an object-relational model, making it possible to store complex business models in a relational database.

Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

-
Hybrid batch/streaming runtime that supports batch processing and data streaming programs.;Custom memory management to guarantee efficient, adaptive, and highly robust switching between in-memory and data processing out-of-core algorithms.;Flexible and expressive windowing semantics for data stream programs;Built-in program optimizer that chooses the proper runtime operations for each program;Custom type analysis and serialization stack for high performance
Statistics
GitHub Stars
-
GitHub Stars
25.4K
GitHub Forks
-
GitHub Forks
13.7K
Stacks
2.6K
Stacks
534
Followers
1.8K
Followers
879
Votes
113
Votes
38
Pros & Cons
Pros
  • 44
    Reliable
  • 33
    Enterprise
  • 15
    High Availability
  • 5
    Hard to maintain
  • 5
    Expensive
Cons
  • 14
    Expensive
Pros
  • 16
    Unified batch and stream processing
  • 8
    Easy to use streaming apis
  • 8
    Out-of-the box connector to kinesis,s3,hdfs
  • 4
    Open Source
  • 2
    Low latency
Integrations
No integrations available
YARN Hadoop
YARN Hadoop
Hadoop
Hadoop
HBase
HBase
Kafka
Kafka

What are some alternatives to Oracle, Apache Flink?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase