Need advice about which tool to choose?Ask the StackShare community!

dbt

316
311
+ 1
6
Apache Spark

2.7K
3.1K
+ 1
137
Add tool
Advice on dbt and Apache Spark
Nilesh Akhade
Technical Architect at Self Employed · | 5 upvotes · 333.7K views

We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.

In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.

In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.

See more
Replies (2)
Recommends
ElasticsearchElasticsearch

The first solution that came to me is to use upsert to update ElasticSearch:

  1. Use the primary-key as ES document id
  2. Upsert the records to ES as soon as you receive them. As you are using upsert, the 2nd record of the same primary-key will not overwrite the 1st one, but will be merged with it.

Cons: The load on ES will be higher, due to upsert.

To use Flink:

  1. Create a KeyedDataStream by the primary-key
  2. In the ProcessFunction, save the first record in a State. At the same time, create a Timer for 15 minutes in the future
  3. When the 2nd record comes, read the 1st record from the State, merge those two, and send out the result, and clear the State and the Timer if it has not fired
  4. When the Timer fires, read the 1st record from the State and send out as the output record.
  5. Have a 2nd Timer of 6 hours (or more) if you are not using Windowing to clean up the State

Pro: if you have already having Flink ingesting this stream. Otherwise, I would just go with the 1st solution.

See more
Akshaya Rawat
Senior Specialist Platform at Publicis Sapient · | 3 upvotes · 210.8K views
Recommends
Apache SparkApache Spark

Please refer "Structured Streaming" feature of Spark. Refer "Stream - Stream Join" at https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#stream-stream-joins . In short you need to specify "Define watermark delays on both inputs" and "Define a constraint on time across the two inputs"

See more
Get Advice from developers at your company using StackShare Enterprise. Sign up for StackShare Enterprise.
Learn More
Pros of dbt
Pros of Apache Spark
  • 1
    Easy for SQL programmers to learn
  • 1
    Modularity, portability, CI/CD, and documentation
  • 1
    Faster Integrated Testing
  • 1
    Reusable Macro
  • 1
    Schedule Jobs
  • 1
    CI/CD
  • 59
    Open-source
  • 48
    Fast and Flexible
  • 8
    One platform for every big data problem
  • 7
    Great for distributed SQL like applications
  • 6
    Easy to install and to use
  • 3
    Works well for most Datascience usecases
  • 2
    Interactive Query
  • 2
    In memory Computation
  • 2
    Machine learning libratimery, Streaming in real

Sign up to add or upvote prosMake informed product decisions

Cons of dbt
Cons of Apache Spark
    Be the first to leave a con
    • 3
      Speed

    Sign up to add or upvote consMake informed product decisions

    - No public GitHub repository available -

    What is dbt?

    dbt is a transformation workflow that lets teams deploy analytics code following software engineering best practices like modularity, portability, CI/CD, and documentation. Now anyone who knows SQL can build production-grade data pipelines.

    What is Apache Spark?

    Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

    Need advice about which tool to choose?Ask the StackShare community!

    Jobs that mention dbt and Apache Spark as a desired skillset
    CBRE
    United Kingdom of Great Britain and Northern Ireland England Basildon
    CBRE
    United Kingdom of Great Britain and Northern Ireland England London
    CBRE
    United States of America Nebraska Springfield
    CBRE
    United States of America Virginia Sandston
    CBRE
    Poland Mazowieckie Warsaw
    CBRE
    Netherlands Noord-Holland Amsterdam
    CBRE
    Netherlands Noord-Holland Amsterdam
    What companies use dbt?
    What companies use Apache Spark?
    See which teams inside your own company are using dbt or Apache Spark.
    Sign up for StackShare EnterpriseLearn More

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with dbt?
    What tools integrate with Apache Spark?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    Blog Posts

    Mar 24 2021 at 12:57PM

    Pinterest

    GitJenkinsKafka+7
    3
    1796
    MySQLKafkaApache Spark+6
    2
    1764
    Aug 28 2019 at 3:10AM

    Segment

    PythonJavaAmazon S3+16
    6
    2291
    What are some alternatives to dbt and Apache Spark?
    act
    Rather than having to commit/push every time you want test out the changes you are making to your .github/workflows/ files (or for any changes to embedded GitHub actions), you can use this tool to run the actions locally. The environment variables and filesystem are all configured to match what GitHub provides.
    Airflow
    Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.
    Looker
    We've built a unique data modeling language, connections to today's fastest analytical databases, and a service that you can deploy on any infrastructure, and explore on any device. Plus, we'll help you every step of the way.
    Slick
    It is a modern database query and access library for Scala. It allows you to work with stored data almost as if you were using Scala collections while at the same time giving you full control over when a database access happens and which data is transferred.
    Spring Data
    It makes it easy to use data access technologies, relational and non-relational databases, map-reduce frameworks, and cloud-based data services. This is an umbrella project which contains many subprojects that are specific to a given database.
    See all alternatives