Need advice about which tool to choose?Ask the StackShare community!

BDS

3
9
+ 1
0
Apache Spark

3K
3.5K
+ 1
140
Add tool

Apache Spark vs BDS: What are the differences?

Developers describe Apache Spark as "Fast and general engine for large-scale data processing". Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning. On the other hand, BDS is detailed as "*Blockchain data parsing and persisting results *". It is a realtime data aggregating, analyzing and visualization service for chain-like unstructured data from all kinds of 3rd party Blockchains.

Apache Spark belongs to "Big Data Tools" category of the tech stack, while BDS can be primarily classified under "Blockchain".

Some of the features offered by Apache Spark are:

  • Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk
  • Write applications quickly in Java, Scala or Python
  • Combine SQL, streaming, and complex analytics

On the other hand, BDS provides the following key features:

  • Cover dozens of well-known Blockchain projects, including BTC, ETH, LTC, XRP, BCH, etc
  • Provide an interactive data visualization BI tool
  • Support standard SQL Query statements so that complex query logics can be implemented easily

Apache Spark and BDS are both open source tools. Apache Spark with 23.2K GitHub stars and 19.9K forks on GitHub appears to be more popular than BDS with 324 GitHub stars and 42 GitHub forks.

Advice on BDS and Apache Spark
Nilesh Akhade
Technical Architect at Self Employed · | 5 upvotes · 542.3K views

We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.

In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.

In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.

See more
Replies (2)
Recommends
on
ElasticsearchElasticsearch

The first solution that came to me is to use upsert to update ElasticSearch:

  1. Use the primary-key as ES document id
  2. Upsert the records to ES as soon as you receive them. As you are using upsert, the 2nd record of the same primary-key will not overwrite the 1st one, but will be merged with it.

Cons: The load on ES will be higher, due to upsert.

To use Flink:

  1. Create a KeyedDataStream by the primary-key
  2. In the ProcessFunction, save the first record in a State. At the same time, create a Timer for 15 minutes in the future
  3. When the 2nd record comes, read the 1st record from the State, merge those two, and send out the result, and clear the State and the Timer if it has not fired
  4. When the Timer fires, read the 1st record from the State and send out as the output record.
  5. Have a 2nd Timer of 6 hours (or more) if you are not using Windowing to clean up the State

Pro: if you have already having Flink ingesting this stream. Otherwise, I would just go with the 1st solution.

See more
Akshaya Rawat
Senior Specialist Platform at Publicis Sapient · | 3 upvotes · 382.3K views
Recommends
on
Apache SparkApache Spark

Please refer "Structured Streaming" feature of Spark. Refer "Stream - Stream Join" at https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#stream-stream-joins . In short you need to specify "Define watermark delays on both inputs" and "Define a constraint on time across the two inputs"

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of BDS
Pros of Apache Spark
    Be the first to leave a pro
    • 61
      Open-source
    • 48
      Fast and Flexible
    • 8
      One platform for every big data problem
    • 8
      Great for distributed SQL like applications
    • 6
      Easy to install and to use
    • 3
      Works well for most Datascience usecases
    • 2
      Interactive Query
    • 2
      Machine learning libratimery, Streaming in real
    • 2
      In memory Computation

    Sign up to add or upvote prosMake informed product decisions

    Cons of BDS
    Cons of Apache Spark
      Be the first to leave a con
      • 4
        Speed

      Sign up to add or upvote consMake informed product decisions

      No Stats

      What is BDS?

      It is a realtime data aggregating, analyzing and visualization service for chain-like unstructured data from all kinds of 3rd party Blockchains.

      What is Apache Spark?

      Spark is a fast and general processing engine compatible with Hadoop data. It can run in Hadoop clusters through YARN or Spark's standalone mode, and it can process data in HDFS, HBase, Cassandra, Hive, and any Hadoop InputFormat. It is designed to perform both batch processing (similar to MapReduce) and new workloads like streaming, interactive queries, and machine learning.

      Need advice about which tool to choose?Ask the StackShare community!

      What companies use BDS?
      What companies use Apache Spark?
        No companies found
        Manage your open source components, licenses, and vulnerabilities
        Learn More

        Sign up to get full access to all the companiesMake informed product decisions

        What tools integrate with BDS?
        What tools integrate with Apache Spark?

        Sign up to get full access to all the tool integrationsMake informed product decisions

        Blog Posts

        Mar 24 2021 at 12:57PM

        Pinterest

        GitJenkinsKafka+7
        3
        2184
        MySQLKafkaApache Spark+6
        2
        2035
        Aug 28 2019 at 3:10AM

        Segment

        PythonJavaAmazon S3+16
        7
        2599
        What are some alternatives to BDS and Apache Spark?
        JavaScript
        JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles.
        Git
        Git is a free and open source distributed version control system designed to handle everything from small to very large projects with speed and efficiency.
        GitHub
        GitHub is the best place to share code with friends, co-workers, classmates, and complete strangers. Over three million people use GitHub to build amazing things together.
        Python
        Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best.
        jQuery
        jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting of HTML.
        See all alternatives