Need advice about which tool to choose?Ask the StackShare community!
Azure Service Fabric vs Kubernetes: What are the differences?
Azure Service Fabric and Kubernetes are both popular container orchestration platforms that offer a range of features and capabilities. While they serve similar purposes, there are key differences between the two platforms.
Infrastructure setup: Azure Service Fabric is a platform that abstracts away the underlying infrastructure, allowing developers to focus on building applications. On the other hand, Kubernetes is an open-source platform that can be deployed on any infrastructure, giving users more control over their infrastructure setup.
Deployment and scaling: Azure Service Fabric provides built-in support for microservices, making it easy to deploy and scale applications composed of multiple services. In contrast, Kubernetes focuses on managing containers and offers more flexibility in terms of containerization, allowing users to deploy and scale containerized applications.
Service discovery and load balancing: Azure Service Fabric includes built-in service discovery and load balancing features, making it easier for applications to discover and communicate with other services in the cluster. Kubernetes relies on external tools and services for service discovery and load balancing, offering more flexibility but requiring additional configuration and setup.
Monitoring and diagnostics: Azure Service Fabric provides built-in monitoring and diagnostics capabilities, allowing developers to easily monitor the health and performance of their applications. Kubernetes, on the other hand, requires the use of external monitoring and logging tools for monitoring and diagnostics, offering more flexibility but requiring additional setup and configuration.
Application lifecycle management: Azure Service Fabric provides comprehensive application lifecycle management capabilities, including rolling upgrades and versioning, making it easier to manage and upgrade applications. Kubernetes also supports rolling upgrades but does not provide built-in versioning and advanced application lifecycle management features.
Support and ecosystem: Azure Service Fabric is a Microsoft product and has strong integration with other Azure services, providing a consistent and unified experience for users. Kubernetes, being an open-source platform, has a larger community and ecosystem, with support from major cloud providers and a wide range of third-party tools and services available.
In summary, Azure Service Fabric is a platform-as-a-service offering that abstracts away the underlying infrastructure and provides comprehensive application management features. Kubernetes, on the other hand, is an open-source container orchestration platform that offers more flexibility in terms of infrastructure setup and containerization. The choice between the two platforms depends on the specific requirements and preferences of the users.
Our whole DevOps stack consists of the following tools:
- GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
- Respectively Git as revision control system
- SourceTree as Git GUI
- Visual Studio Code as IDE
- CircleCI for continuous integration (automatize development process)
- Prettier / TSLint / ESLint as code linter
- SonarQube as quality gate
- Docker as container management (incl. Docker Compose for multi-container application management)
- VirtualBox for operating system simulation tests
- Kubernetes as cluster management for docker containers
- Heroku for deploying in test environments
- nginx as web server (preferably used as facade server in production environment)
- SSLMate (using OpenSSL) for certificate management
- Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
- PostgreSQL as preferred database system
- Redis as preferred in-memory database/store (great for caching)
The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:
- Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
- Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
- Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
- Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
- Scalability: All-in-one framework for distributed systems.
- Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
Pros of Azure Service Fabric
- Intelligent, fast, reliable5
- Runs most of Azure core services4
- Reliability3
- Superior programming models3
- More reliable than Kubernetes3
- Open source3
- Quickest recovery and healing in the world2
- Deploy anywhere1
- Is data storage technology1
- Battle hardened in Azure > 10 Years1
Pros of Kubernetes
- Leading docker container management solution166
- Simple and powerful129
- Open source107
- Backed by google76
- The right abstractions58
- Scale services25
- Replication controller20
- Permission managment11
- Supports autoscaling9
- Simple8
- Cheap8
- Self-healing6
- Open, powerful, stable5
- Reliable5
- No cloud platform lock-in5
- Promotes modern/good infrascture practice5
- Scalable4
- Quick cloud setup4
- Custom and extensibility3
- Captain of Container Ship3
- Cloud Agnostic3
- Backed by Red Hat3
- Runs on azure3
- A self healing environment with rich metadata3
- Everything of CaaS2
- Gke2
- Golang2
- Easy setup2
- Expandable2
- Sfg2
Sign up to add or upvote prosMake informed product decisions
Cons of Azure Service Fabric
Cons of Kubernetes
- Steep learning curve16
- Poor workflow for development15
- Orchestrates only infrastructure8
- High resource requirements for on-prem clusters4
- Too heavy for simple systems2
- Additional vendor lock-in (Docker)1
- More moving parts to secure1
- Additional Technology Overhead1