Need advice about which tool to choose?Ask the StackShare community!

Airflow

1.2K
2K
+ 1
113
Apache Flink

406
637
+ 1
35
Add tool

Airflow vs Apache Flink: What are the differences?

Developers describe Airflow as "A platform to programmaticaly author, schedule and monitor data pipelines, by Airbnb". Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed. On the other hand, Apache Flink is detailed as "Fast and reliable large-scale data processing engine". Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

Airflow can be classified as a tool in the "Workflow Manager" category, while Apache Flink is grouped under "Big Data Tools".

Some of the features offered by Airflow are:

  • Dynamic: Airflow pipelines are configuration as code (Python), allowing for dynamic pipeline generation. This allows for writting code that instantiate pipelines dynamically.
  • Extensible: Easily define your own operators, executors and extend the library so that it fits the level of abstraction that suits your environment.
  • Elegant: Airflow pipelines are lean and explicit. Parameterizing your scripts is built in the core of Airflow using powerful Jinja templating engine.

On the other hand, Apache Flink provides the following key features:

  • Hybrid batch/streaming runtime that supports batch processing and data streaming programs.
  • Custom memory management to guarantee efficient, adaptive, and highly robust switching between in-memory and data processing out-of-core algorithms.
  • Flexible and expressive windowing semantics for data stream programs

Airflow and Apache Flink are both open source tools. It seems that Airflow with 12.9K GitHub stars and 4.71K forks on GitHub has more adoption than Apache Flink with 9.35K GitHub stars and 5K GitHub forks.

According to the StackShare community, Airflow has a broader approval, being mentioned in 72 company stacks & 33 developers stacks; compared to Apache Flink, which is listed in 20 company stacks and 22 developer stacks.

Advice on Airflow and Apache Flink
Nilesh Akhade
Technical Architect at Self Employed · | 5 upvotes · 237K views

We have a Kafka topic having events of type A and type B. We need to perform an inner join on both type of events using some common field (primary-key). The joined events to be inserted in Elasticsearch.

In usual cases, type A and type B events (with same key) observed to be close upto 15 minutes. But in some cases they may be far from each other, lets say 6 hours. Sometimes event of either of the types never come.

In all cases, we should be able to find joined events instantly after they are joined and not-joined events within 15 minutes.

See more
Replies (2)
Recommends
ElasticsearchElasticsearch

The first solution that came to me is to use upsert to update ElasticSearch:

  1. Use the primary-key as ES document id
  2. Upsert the records to ES as soon as you receive them. As you are using upsert, the 2nd record of the same primary-key will not overwrite the 1st one, but will be merged with it.

Cons: The load on ES will be higher, due to upsert.

To use Flink:

  1. Create a KeyedDataStream by the primary-key
  2. In the ProcessFunction, save the first record in a State. At the same time, create a Timer for 15 minutes in the future
  3. When the 2nd record comes, read the 1st record from the State, merge those two, and send out the result, and clear the State and the Timer if it has not fired
  4. When the Timer fires, read the 1st record from the State and send out as the output record.
  5. Have a 2nd Timer of 6 hours (or more) if you are not using Windowing to clean up the State

Pro: if you have already having Flink ingesting this stream. Otherwise, I would just go with the 1st solution.

See more
Akshaya Rawat
Senior Specialist Platform at Publicis Sapient · | 3 upvotes · 137.5K views
Recommends
Apache SparkApache Spark

Please refer "Structured Streaming" feature of Spark. Refer "Stream - Stream Join" at https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#stream-stream-joins . In short you need to specify "Define watermark delays on both inputs" and "Define a constraint on time across the two inputs"

See more
Needs advice
on
Apache SparkApache SparkLuigiLuigi
and
AirflowAirflow

I am so confused. I need a tool that will allow me to go to about 10 different URLs to get a list of objects. Those object lists will be hundreds or thousands in length. I then need to get detailed data lists about each object. Those detailed data lists can have hundreds of elements that could be map/reduced somehow. My batch process dies sometimes halfway through which means hours of processing gone, i.e. time wasted. I need something like a directed graph that will keep results of successful data collection and allow me either pragmatically or manually to retry the failed ones some way (0 - forever) times. I want it to then process all the ones that have succeeded or been effectively ignored and load the data store with the aggregation of some couple thousand data-points. I know hitting this many endpoints is not a good practice but I can't put collectors on all the endpoints or anything like that. It is pretty much the only way to get the data.

See more
Replies (1)
Gilroy Gordon
Solution Architect at IGonics Limited · | 2 upvotes · 128.7K views
Recommends
CassandraCassandra

For a non-streaming approach:

You could consider using more checkpoints throughout your spark jobs. Furthermore, you could consider separating your workload into multiple jobs with an intermittent data store (suggesting cassandra or you may choose based on your choice and availability) to store results , perform aggregations and store results of those.

Spark Job 1 - Fetch Data From 10 URLs and store data and metadata in a data store (cassandra) Spark Job 2..n - Check data store for unprocessed items and continue the aggregation

Alternatively for a streaming approach: Treating your data as stream might be useful also. Spark Streaming allows you to utilize a checkpoint interval - https://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing

See more
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Airflow
Pros of Apache Flink
  • 44
    Features
  • 13
    Task Dependency Management
  • 12
    Beautiful UI
  • 11
    Cluster of workers
  • 10
    Extensibility
  • 5
    Open source
  • 4
    Python
  • 4
    Complex workflows
  • 3
    K
  • 2
    Custom operators
  • 2
    Dashboard
  • 2
    Good api
  • 1
    Apache project
  • 15
    Unified batch and stream processing
  • 8
    Easy to use streaming apis
  • 8
    Out-of-the box connector to kinesis,s3,hdfs
  • 3
    Open Source
  • 1
    Low latency

Sign up to add or upvote prosMake informed product decisions

Cons of Airflow
Cons of Apache Flink
  • 1
    Open source - provides minimum or no support
  • 1
    Logical separation of DAGs is not straight forward
  • 1
    Running it on kubernetes cluster relatively complex
  • 1
    Observability is not great when the DAGs exceed 250
    Be the first to leave a con

    Sign up to add or upvote consMake informed product decisions

    What is Airflow?

    Use Airflow to author workflows as directed acyclic graphs (DAGs) of tasks. The Airflow scheduler executes your tasks on an array of workers while following the specified dependencies. Rich command lines utilities makes performing complex surgeries on DAGs a snap. The rich user interface makes it easy to visualize pipelines running in production, monitor progress and troubleshoot issues when needed.

    What is Apache Flink?

    Apache Flink is an open source system for fast and versatile data analytics in clusters. Flink supports batch and streaming analytics, in one system. Analytical programs can be written in concise and elegant APIs in Java and Scala.

    Need advice about which tool to choose?Ask the StackShare community!

    What companies use Airflow?
    What companies use Apache Flink?
    See which teams inside your own company are using Airflow or Apache Flink.
    Sign up for Private StackShareLearn More

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Airflow?
    What tools integrate with Apache Flink?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    Blog Posts

    What are some alternatives to Airflow and Apache Flink?
    Luigi
    It is a Python module that helps you build complex pipelines of batch jobs. It handles dependency resolution, workflow management, visualization etc. It also comes with Hadoop support built in.
    Apache NiFi
    An easy to use, powerful, and reliable system to process and distribute data. It supports powerful and scalable directed graphs of data routing, transformation, and system mediation logic.
    Jenkins
    In a nutshell Jenkins CI is the leading open-source continuous integration server. Built with Java, it provides over 300 plugins to support building and testing virtually any project.
    AWS Step Functions
    AWS Step Functions makes it easy to coordinate the components of distributed applications and microservices using visual workflows. Building applications from individual components that each perform a discrete function lets you scale and change applications quickly.
    Pachyderm
    Pachyderm is an open source MapReduce engine that uses Docker containers for distributed computations.
    See all alternatives