StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. Microsoft SQL Server vs Serverless

Microsoft SQL Server vs Serverless

OverviewDecisionsComparisonAlternatives

Overview

Microsoft SQL Server
Microsoft SQL Server
Stacks21.3K
Followers15.5K
Votes540
Serverless
Serverless
Stacks2.2K
Followers1.2K
Votes28
GitHub Stars46.9K
Forks5.7K

Microsoft SQL Server vs Serverless: What are the differences?

Introduction

In this article, we will discuss the key differences between Microsoft SQL Server and Serverless.

  1. Scalability: Microsoft SQL Server is a traditional relational database management system (RDBMS) that requires provisioning and managing resources to handle scalability. On the other hand, Serverless databases automatically scale up and down based on the workload, eliminating the need for manual provisioning and management.

  2. Pricing Model: Microsoft SQL Server typically follows a traditional licensing model where users need to purchase and manage licenses based on the number of cores, with additional charges for features and support. In contrast, Serverless databases often follow a pay-per-use model, where users only pay for the resources consumed during query execution.

  3. Infrastructure Management: With Microsoft SQL Server, users are responsible for managing and maintaining the underlying infrastructure, including servers, operating systems, patching, backups, etc. In the case of Serverless databases, most of the infrastructure management tasks are abstracted away, allowing users to focus solely on data and applications.

  4. Automatic Scaling: In Microsoft SQL Server, scaling the database to handle increased workloads often requires manual intervention, such as adding more servers or increasing resource allocations. Serverless databases automatically handle scalability by dynamically provisioning resources based on demand, ensuring optimal performance without user intervention.

  5. Query Optimization: Microsoft SQL Server incorporates various query optimization techniques, such as indexing, caching, and query plan analysis, to enhance query performance. Serverless databases also employ similar optimization techniques but may have different mechanisms tailored to their specific implementation.

  6. Pay-Per-Use: While Microsoft SQL Server generally has a fixed cost regardless of usage, Serverless databases charge users based on the actual resources consumed during query execution. This pay-per-use model can be more cost-effective for sporadic or unpredictable workloads where resources are only allocated when needed.

In Summary, Microsoft SQL Server is a traditional RDBMS that requires manual provisioning, management, and scaling, whereas Serverless databases automatically handle scalability, have a pay-per-use pricing model, and abstract away infrastructure management tasks, making them more flexible and cost-effective.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Microsoft SQL Server, Serverless

Tim
Tim

CTO at Checkly Inc.

Sep 18, 2019

Needs adviceonHerokuHerokuAWS LambdaAWS Lambda

When adding a new feature to Checkly rearchitecting some older piece, I tend to pick Heroku for rolling it out. But not always, because sometimes I pick AWS Lambda . The short story:

  • Developer Experience trumps everything.
  • AWS Lambda is cheap. Up to a limit though. This impact not only your wallet.
  • If you need geographic spread, AWS is lonely at the top.

The setup

Recently, I was doing a brainstorm at a startup here in Berlin on the future of their infrastructure. They were ready to move on from their initial, almost 100% Ec2 + Chef based setup. Everything was on the table. But we crossed out a lot quite quickly:

  • Pure, uncut, self hosted Kubernetes — way too much complexity
  • Managed Kubernetes in various flavors — still too much complexity
  • Zeit — Maybe, but no Docker support
  • Elastic Beanstalk — Maybe, bit old but does the job
  • Heroku
  • Lambda

It became clear a mix of PaaS and FaaS was the way to go. What a surprise! That is exactly what I use for Checkly! But when do you pick which model?

I chopped that question up into the following categories:

  • Developer Experience / DX 🤓
  • Ops Experience / OX 🐂 (?)
  • Cost 💵
  • Lock in 🔐

Read the full post linked below for all details

357k views357k
Comments
Erin
Erin

IT Specialist

Mar 10, 2020

Needs adviceonMicrosoft SQL ServerMicrosoft SQL ServerMySQLMySQLPostgreSQLPostgreSQL

I am a Microsoft SQL Server programmer who is a bit out of practice. I have been asked to assist on a new project. The overall purpose is to organize a large number of recordings so that they can be searched. I have an enormous music library but my songs are several hours long. I need to include things like time, date and location of the recording. I don't have a problem with the general database design. I have two primary questions:

  1. I need to use either @{MySQL}|tool:1025| or @{PostgreSQL}|tool:1028| on a @{Linux}|tool:10483| based OS. Which would be better for this application?
  2. I have not dealt with a sound based data type before. How do I store that and put it in a table? Thank you.
668k views668k
Comments

Detailed Comparison

Microsoft SQL Server
Microsoft SQL Server
Serverless
Serverless

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

Build applications comprised of microservices that run in response to events, auto-scale for you, and only charge you when they run. This lowers the total cost of maintaining your apps, enabling you to build more logic, faster. The Framework uses new event-driven compute services, like AWS Lambda, Google CloudFunctions, and more.

Statistics
GitHub Stars
-
GitHub Stars
46.9K
GitHub Forks
-
GitHub Forks
5.7K
Stacks
21.3K
Stacks
2.2K
Followers
15.5K
Followers
1.2K
Votes
540
Votes
28
Pros & Cons
Pros
  • 139
    Reliable and easy to use
  • 101
    High performance
  • 95
    Great with .net
  • 65
    Works well with .net
  • 56
    Easy to maintain
Cons
  • 4
    Expensive Licensing
  • 2
    Microsoft
  • 1
    The maximum number of connections is only 14000 connect
  • 1
    Replication can loose the data
  • 1
    Allwayon can loose data in asycronious mode
Pros
  • 14
    API integration
  • 7
    Supports cloud functions for Google, Azure, and IBM
  • 3
    Lower cost
  • 1
    3. Simplified Management for developers to focus on cod
  • 1
    Openwhisk
Integrations
No integrations available
Azure Functions
Azure Functions
AWS Lambda
AWS Lambda
Amazon API Gateway
Amazon API Gateway

What are some alternatives to Microsoft SQL Server, Serverless?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

AWS Lambda

AWS Lambda

AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase