Need advice about which tool to choose?Ask the StackShare community!

Hadoop

2.3K
2.2K
+ 1
56
Redis

52.3K
39.7K
+ 1
3.9K
Add tool

Hadoop vs Redis: What are the differences?

What is Hadoop? Open-source software for reliable, scalable, distributed computing. The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.

What is Redis? An in-memory database that persists on disk. Redis is an open source, BSD licensed, advanced key-value store. It is often referred to as a data structure server since keys can contain strings, hashes, lists, sets and sorted sets.

Hadoop and Redis are primarily classified as "Databases" and "In-Memory Databases" tools respectively.

"Great ecosystem" is the primary reason why developers consider Hadoop over the competitors, whereas "Performance" was stated as the key factor in picking Redis.

Hadoop and Redis are both open source tools. It seems that Redis with 37.1K GitHub stars and 14.3K forks on GitHub has more adoption than Hadoop with 9.18K GitHub stars and 5.74K GitHub forks.

reddit, Instacart, and Slack are some of the popular companies that use Redis, whereas Hadoop is used by Slack, Shopify, and SendGrid. Redis has a broader approval, being mentioned in 3239 company stacks & 1732 developers stacks; compared to Hadoop, which is listed in 237 company stacks and 116 developer stacks.

Advice on Hadoop and Redis
Needs advice
on
HadoopHadoopInfluxDBInfluxDB
and
KafkaKafka

I have a lot of data that's currently sitting in a MariaDB database, a lot of tables that weigh 200gb with indexes. Most of the large tables have a date column which is always filtered, but there are usually 4-6 additional columns that are filtered and used for statistics. I'm trying to figure out the best tool for storing and analyzing large amounts of data. Preferably self-hosted or a cheap solution. The current problem I'm running into is speed. Even with pretty good indexes, if I'm trying to load a large dataset, it's pretty slow.

See more
Replies (1)
Recommends
DruidDruid

Druid Could be an amazing solution for your use case, My understanding, and the assumption is you are looking to export your data from MariaDB for Analytical workload. It can be used for time series database as well as a data warehouse and can be scaled horizontally once your data increases. It's pretty easy to set up on any environment (Cloud, Kubernetes, or Self-hosted nix system). Some important features which make it a perfect solution for your use case. 1. It can do streaming ingestion (Kafka, Kinesis) as well as batch ingestion (Files from Local & Cloud Storage or Databases like MySQL, Postgres). In your case MariaDB (which has the same drivers to MySQL) 2. Columnar Database, So you can query just the fields which are required, and that runs your query faster automatically. 3. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. 4. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures 5. Gives ana amazing centralized UI to manage data sources, query, tasks.

See more
Get Advice from developers at your company using StackShare Enterprise. Sign up for StackShare Enterprise.
Learn More
Pros of Hadoop
Pros of Redis
  • 39
    Great ecosystem
  • 11
    One stack to rule them all
  • 4
    Great load balancer
  • 1
    Amazon aws
  • 1
    Java syntax
  • 881
    Performance
  • 539
    Super fast
  • 510
    Ease of use
  • 441
    In-memory cache
  • 321
    Advanced key-value cache
  • 190
    Open source
  • 179
    Easy to deploy
  • 163
    Stable
  • 152
    Free
  • 120
    Fast
  • 40
    High-Performance
  • 39
    High Availability
  • 34
    Data Structures
  • 31
    Very Scalable
  • 23
    Replication
  • 20
    Pub/Sub
  • 20
    Great community
  • 17
    "NoSQL" key-value data store
  • 14
    Hashes
  • 12
    Sets
  • 10
    Sorted Sets
  • 9
    Lists
  • 8
    BSD licensed
  • 8
    NoSQL
  • 7
    Integrates super easy with Sidekiq for Rails background
  • 7
    Async replication
  • 7
    Bitmaps
  • 6
    Keys with a limited time-to-live
  • 6
    Open Source
  • 5
    Strings
  • 5
    Lua scripting
  • 4
    Hyperloglogs
  • 4
    Awesomeness for Free!
  • 3
    Transactions
  • 3
    Runs server side LUA
  • 3
    outstanding performance
  • 3
    Networked
  • 3
    LRU eviction of keys
  • 3
    Written in ANSI C
  • 3
    Feature Rich
  • 2
    Performance & ease of use
  • 2
    Data structure server
  • 1
    Simple
  • 1
    Channels concept
  • 1
    Scalable
  • 1
    Temporarily kept on disk
  • 1
    Dont save data if no subscribers are found
  • 1
    Automatic failover
  • 1
    Easy to use
  • 1
    Existing Laravel Integration
  • 1
    Object [key/value] size each 500 MB

Sign up to add or upvote prosMake informed product decisions

Cons of Hadoop
Cons of Redis
    Be the first to leave a con
    • 14
      Cannot query objects directly
    • 2
      No secondary indexes for non-numeric data types
    • 1
      No WAL

    Sign up to add or upvote consMake informed product decisions

    - No public GitHub repository available -

    What is Hadoop?

    The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.

    What is Redis?

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams.

    Need advice about which tool to choose?Ask the StackShare community!

    What companies use Hadoop?
    What companies use Redis?
    See which teams inside your own company are using Hadoop or Redis.
    Sign up for StackShare EnterpriseLearn More

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Hadoop?
    What tools integrate with Redis?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    Blog Posts

    What are some alternatives to Hadoop and Redis?
    Cassandra
    Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.
    MongoDB
    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.
    Elasticsearch
    Elasticsearch is a distributed, RESTful search and analytics engine capable of storing data and searching it in near real time. Elasticsearch, Kibana, Beats and Logstash are the Elastic Stack (sometimes called the ELK Stack).
    Splunk
    It provides the leading platform for Operational Intelligence. Customers use it to search, monitor, analyze and visualize machine data.
    Snowflake
    Snowflake eliminates the administration and management demands of traditional data warehouses and big data platforms. Snowflake is a true data warehouse as a service running on Amazon Web Services (AWS)—no infrastructure to manage and no knobs to turn.
    See all alternatives