StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Languages
  4. Languages
  5. Elm vs Haskell

Elm vs Haskell

OverviewDecisionsComparisonAlternatives

Overview

Haskell
Haskell
Stacks1.4K
Followers1.2K
Votes527
Elm
Elm
Stacks758
Followers744
Votes319

Elm vs Haskell: What are the differences?

Introduction:

Elm and Haskell are both functional programming languages that have gained popularity in recent years. While they share many similarities, there are also key differences between the two.

1. Type Inference One major difference between Elm and Haskell is their approach to type inference. In Elm, the type inference is automatic and the language is designed to be beginner-friendly. On the other hand, Haskell has a more powerful and advanced type system that allows for more fine-grained control and explicit type annotations.

2. Mutable State Another significant difference between Elm and Haskell is their treatment of mutable state. Elm emphasizes immutability and enforces strict functional purity, where all values are immutable by default. In contrast, Haskell allows mutable state through the use of monads and the IO (input/output) system.

3. Handling Effects Elm and Haskell also differ in how they handle side effects and IO operations. Elm uses a declarative approach called "The Elm Architecture" to manage the effects, making it easier to reason about the code and prevent runtime errors. Haskell, on the other hand, uses a monadic approach with the IO type to handle effects, providing more flexibility at the cost of additional complexity.

4. Ecosystem and Community The ecosystems and communities surrounding Elm and Haskell also differ. Elm has a smaller and more focused ecosystem, with a primary focus on web development and a limited number of packages available. Haskell, on the other hand, has a larger and more mature ecosystem with a wide range of libraries and frameworks available for different use cases.

5. Performance In terms of performance, Haskell generally outperforms Elm due to its more optimized compiler and more advanced runtime system. Elm, on the other hand, prioritizes simplicity and ease of use over performance optimizations, which makes it more suitable for smaller web applications or prototypes.

6. Learning Curve Finally, the learning curves for Elm and Haskell differ. Elm is designed to be beginner-friendly and has a gentle learning curve, making it easier for newcomers to get started with functional programming. Haskell, on the other hand, has a steeper learning curve due to its advanced type system and more complex concepts, making it more suitable for experienced programmers.

In summary, Elm and Haskell differ in their approach to type inference, handling of mutable state, management of effects, ecosystem and community, performance, and learning curve. Elm prioritizes simplicity and beginner-friendliness, while Haskell offers more advanced features and flexibility at the cost of increased complexity.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Haskell, Elm

Timm
Timm

VP Of Engineering at Flexperto GmbH

Nov 10, 2020

Decided

We have a lot of experience in JavaScript, writing our services in NodeJS allows developers to transition to the back end without any friction, without having to learn a new language. There is also the option to write services in TypeScript, which adds an expressive type layer. The semi-shared ecosystem between front and back end is nice as well, though specifically NodeJS libraries sometimes suffer in quality, compared to other major languages.

As for why we didn't pick the other languages, most of it comes down to "personal preference" and historically grown code bases, but let's do some post-hoc deduction:

Go is a practical choice, reasonably easy to learn, but until we find performance issues with our NodeJS stack, there is simply no reason to switch. The benefits of using NodeJS so far outweigh those of picking Go. This might change in the future.

PHP is a language we're still using in big parts of our system, and are still sometimes writing new code in. Modern PHP has fixed some of its issues, and probably has the fastest development cycle time, but it suffers around modelling complex asynchronous tasks, and (on a personal note) lack of support for writing in a functional style.

We don't use Python, Elixir or Ruby, mostly because of personal preference and for historic reasons.

Rust, though I personally love and use it in my projects, would require us to specifically hire for that, as the learning curve is quite steep. Its web ecosystem is OK by now (see https://www.arewewebyet.org/), but in my opinion, it is still no where near that of the other web languages. In other words, we are not willing to pay the price for playing this innovation card.

Haskell, as with Rust, I personally adore, but is simply too esoteric for us. There are problem domains where it shines, ours is not one of them.

682k views682k
Comments

Detailed Comparison

Haskell
Haskell
Elm
Elm

It is a general purpose language that can be used in any domain and use case, it is ideally suited for proprietary business logic and data analysis, fast prototyping and enhancing existing software environments with correct code, performance and scalability.

Writing HTML apps is super easy with elm-lang/html. Not only does it render extremely fast, it also quietly guides you towards well-architected code.

Statically typed; Purely functional; Type inference; Concurrent
No Runtime Exceptions; Fearless refactoring; Understand anyone's code; Fast and friendly feedback; Enforced Semantic Versioning; Small Assets
Statistics
Stacks
1.4K
Stacks
758
Followers
1.2K
Followers
744
Votes
527
Votes
319
Pros & Cons
Pros
  • 90
    Purely-functional programming
  • 66
    Statically typed
  • 59
    Type-safe
  • 39
    Open source
  • 38
    Great community
Cons
  • 9
    Too much distraction in language extensions
  • 8
    Error messages can be very confusing
  • 5
    Libraries have poor documentation
  • 3
    No good ABI
  • 3
    No best practices
Pros
  • 45
    Code stays clean
  • 44
    Great type system
  • 40
    No Runtime Exceptions
  • 33
    Fun
  • 28
    Easy to understand
Cons
  • 3
    No typeclasses -> repitition (i.e. map has 130versions)
  • 2
    JS interoperability a bit more involved
  • 2
    JS interop can not be async
  • 1
    Main developer enforces "the correct" style hard
  • 1
    More code is required

What are some alternatives to Haskell, Elm?

JavaScript

JavaScript

JavaScript is most known as the scripting language for Web pages, but used in many non-browser environments as well such as node.js or Apache CouchDB. It is a prototype-based, multi-paradigm scripting language that is dynamic,and supports object-oriented, imperative, and functional programming styles.

Python

Python

Python is a general purpose programming language created by Guido Van Rossum. Python is most praised for its elegant syntax and readable code, if you are just beginning your programming career python suits you best.

PHP

PHP

Fast, flexible and pragmatic, PHP powers everything from your blog to the most popular websites in the world.

Ruby

Ruby

Ruby is a language of careful balance. Its creator, Yukihiro “Matz” Matsumoto, blended parts of his favorite languages (Perl, Smalltalk, Eiffel, Ada, and Lisp) to form a new language that balanced functional programming with imperative programming.

Java

Java

Java is a programming language and computing platform first released by Sun Microsystems in 1995. There are lots of applications and websites that will not work unless you have Java installed, and more are created every day. Java is fast, secure, and reliable. From laptops to datacenters, game consoles to scientific supercomputers, cell phones to the Internet, Java is everywhere!

Golang

Golang

Go is expressive, concise, clean, and efficient. Its concurrency mechanisms make it easy to write programs that get the most out of multicore and networked machines, while its novel type system enables flexible and modular program construction. Go compiles quickly to machine code yet has the convenience of garbage collection and the power of run-time reflection. It's a fast, statically typed, compiled language that feels like a dynamically typed, interpreted language.

HTML5

HTML5

HTML5 is a core technology markup language of the Internet used for structuring and presenting content for the World Wide Web. As of October 2014 this is the final and complete fifth revision of the HTML standard of the World Wide Web Consortium (W3C). The previous version, HTML 4, was standardised in 1997.

C#

C#

C# (pronounced "See Sharp") is a simple, modern, object-oriented, and type-safe programming language. C# has its roots in the C family of languages and will be immediately familiar to C, C++, Java, and JavaScript programmers.

Meteor

Meteor

A Meteor application is a mix of JavaScript that runs inside a client web browser, JavaScript that runs on the Meteor server inside a Node.js container, and all the supporting HTML fragments, CSS rules, and static assets.

Scala

Scala

Scala is an acronym for “Scalable Language”. This means that Scala grows with you. You can play with it by typing one-line expressions and observing the results. But you can also rely on it for large mission critical systems, as many companies, including Twitter, LinkedIn, or Intel do. To some, Scala feels like a scripting language. Its syntax is concise and low ceremony; its types get out of the way because the compiler can infer them.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot