StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Container Registry
  4. Virtual Machine Platforms And Containers
  5. Docker vs Kubernetes

Docker vs Kubernetes

OverviewDecisionsComparisonAlternatives

Overview

Docker
Docker
Stacks194.2K
Followers143.8K
Votes3.9K
Kubernetes
Kubernetes
Stacks61.2K
Followers52.8K
Votes685

Docker vs Kubernetes: What are the differences?

Docker is a containerization platform that allows you to build, package, and distribute applications using containers. Kubernetes is a container orchestration platform that automates the deployment, scaling, and management of containerized applications in a cluster environment. Here are some key differences between Docker and Kubernetes:

  1. Containerization vs Orchestration: Docker is primarily a containerization platform that allows developers to create, package, and distribute applications in containers. It provides an easy way to isolate and run applications with their dependencies. Kubernetes, on the other hand, is an orchestration platform that automates the deployment, scaling, and management of containerized applications across a cluster of machines. While Docker focuses on container creation and management, Kubernetes focuses on the efficient orchestration of containers at scale.

  2. Single Host vs Cluster Management: Docker is designed to work on a single host or a development environment. It is suitable for small-scale deployments and local development setups. In contrast, Kubernetes is designed to manage containerized applications across a cluster of machines, providing features like auto-scaling, load balancing, service discovery, and self-healing capabilities. Kubernetes excels in large-scale production deployments and offers advanced management features for complex distributed systems.

  3. Scope of Control: Docker provides control at the individual container level, allowing developers to manage containers and their resources directly. It provides tools for container image creation, configuration, and deployment. Kubernetes operates at a higher level of abstraction and provides declarative specifications for defining the desired state of the entire application infrastructure. It handles the scheduling and placement of containers, manages their lifecycle, and automatically adjusts resources based on demand.

  4. Flexibility vs Opinions: Docker offers flexibility in terms of the choice of the underlying infrastructure, enabling it to run on various operating systems and cloud platforms. It supports multiple container runtimes, including its default runtime, containerd. Kubernetes, on the other hand, has a more opinionated approach and is closely tied to the Linux operating system. It standardizes the way containers are orchestrated and managed, providing a consistent platform across different environments.

In summary, Docker focuses on containerization and simplifies the process of packaging and running applications in containers. It is suitable for local development and smaller deployments. Kubernetes, on the other hand, is an advanced container orchestration platform designed for large-scale production deployments. It automates the management of containerized applications across a cluster, providing scalability, resilience, and enhanced management capabilities.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Docker, Kubernetes

Simon
Simon

Senior Fullstack Developer at QUANTUSflow Software GmbH

Apr 27, 2020

DecidedonGitHubGitHubGitHub PagesGitHub PagesMarkdownMarkdown

Our whole DevOps stack consists of the following tools:

  • @{GitHub}|tool:27| (incl. @{GitHub Pages}|tool:683|/@{Markdown}|tool:1147| for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively @{Git}|tool:1046| as revision control system
  • @{SourceTree}|tool:1599| as @{Git}|tool:1046| GUI
  • @{Visual Studio Code}|tool:4202| as IDE
  • @{CircleCI}|tool:190| for continuous integration (automatize development process)
  • @{Prettier}|tool:7035| / @{TSLint}|tool:5561| / @{ESLint}|tool:3337| as code linter
  • @{SonarQube}|tool:2638| as quality gate
  • @{Docker}|tool:586| as container management (incl. @{Docker Compose}|tool:3136| for multi-container application management)
  • @{VirtualBox}|tool:774| for operating system simulation tests
  • @{Kubernetes}|tool:1885| as cluster management for docker containers
  • @{Heroku}|tool:133| for deploying in test environments
  • @{nginx}|tool:1052| as web server (preferably used as facade server in production environment)
  • @{SSLMate}|tool:2752| (using @{OpenSSL}|tool:3091|) for certificate management
  • @{Amazon EC2}|tool:18| (incl. @{Amazon S3}|tool:25|) for deploying in stage (production-like) and production environments
  • @{PostgreSQL}|tool:1028| as preferred database system
  • @{Redis}|tool:1031| as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
12.8M views12.8M
Comments
Dimitrijs
Dimitrijs

Aug 18, 2020

Review

I would recommend DigitalOcean for quick VPS creation. But it worth to consider Kubernetes or at least Docker. Once I did a project with DigitalOcean. They were guarantee kind of 90 seconds for creation of new VPS from a predefined template. But if you will decide to use Kubernetes (you can use DigitalOcean for that too, or other clouds, like Google, Azure, Amazon) - the deployment would be even much quicker than 90 seconds.

11.2k views11.2k
Comments
Florian
Florian

IT DevOp at Agitos GmbH

Oct 22, 2019

Decided

lxd/lxc and Docker aren't congruent so this comparison needs a more detailed look; but in short I can say: the lxd-integrated administration of storage including zfs with its snapshot capabilities as well as the system container (multi-process) approach of lxc vs. the limited single-process container approach of Docker is the main reason I chose lxd over Docker.

482k views482k
Comments

Detailed Comparison

Docker
Docker
Kubernetes
Kubernetes

The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere

Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions.

Integrated developer tools; open, portable images; shareable, reusable apps; framework-aware builds; standardized templates; multi-environment support; remote registry management; simple setup for Docker and Kubernetes; certified Kubernetes; application templates; enterprise controls; secure software supply chain; industry-leading container runtime; image scanning; access controls; image signing; caching and mirroring; image lifecycle; policy-based image promotion
Lightweight, simple and accessible;Built for a multi-cloud world, public, private or hybrid;Highly modular, designed so that all of its components are easily swappable
Statistics
Stacks
194.2K
Stacks
61.2K
Followers
143.8K
Followers
52.8K
Votes
3.9K
Votes
685
Pros & Cons
Pros
  • 823
    Rapid integration and build up
  • 692
    Isolation
  • 521
    Open source
  • 505
    Testa­bil­i­ty and re­pro­ducibil­i­ty
  • 460
    Lightweight
Cons
  • 8
    New versions == broken features
  • 6
    Documentation not always in sync
  • 6
    Unreliable networking
  • 4
    Moves quickly
  • 3
    Not Secure
Pros
  • 166
    Leading docker container management solution
  • 130
    Simple and powerful
  • 108
    Open source
  • 76
    Backed by google
  • 58
    The right abstractions
Cons
  • 16
    Steep learning curve
  • 15
    Poor workflow for development
  • 8
    Orchestrates only infrastructure
  • 4
    High resource requirements for on-prem clusters
  • 2
    Too heavy for simple systems
Integrations
Java
Java
Docker Compose
Docker Compose
VirtualBox
VirtualBox
Linux
Linux
Amazon EC2 Container Service
Amazon EC2 Container Service
Docker Swarm
Docker Swarm
boot2docker
boot2docker
Docker Machine
Docker Machine
Vagrant
Vagrant
Google Kubernetes Engine
Google Kubernetes Engine
Vagrant
Vagrant
Rackspace Cloud Servers
Rackspace Cloud Servers
Microsoft Azure
Microsoft Azure
Google Compute Engine
Google Compute Engine
Ansible
Ansible
Google Kubernetes Engine
Google Kubernetes Engine

What are some alternatives to Docker, Kubernetes?

Rancher

Rancher

Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform.

Docker Compose

Docker Compose

With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running.

Docker Swarm

Docker Swarm

Swarm serves the standard Docker API, so any tool which already communicates with a Docker daemon can use Swarm to transparently scale to multiple hosts: Dokku, Compose, Krane, Deis, DockerUI, Shipyard, Drone, Jenkins... and, of course, the Docker client itself.

Tutum

Tutum

Tutum lets developers easily manage and run lightweight, portable, self-sufficient containers from any application. AWS-like control, Heroku-like ease. The same container that a developer builds and tests on a laptop can run at scale in Tutum.

Portainer

Portainer

It is a universal container management tool. It works with Kubernetes, Docker, Docker Swarm and Azure ACI. It allows you to manage containers without needing to know platform-specific code.

LXD

LXD

LXD isn't a rewrite of LXC, in fact it's building on top of LXC to provide a new, better user experience. Under the hood, LXD uses LXC through liblxc and its Go binding to create and manage the containers. It's basically an alternative to LXC's tools and distribution template system with the added features that come from being controllable over the network.

Codefresh

Codefresh

Automate and parallelize testing. Codefresh allows teams to spin up on-demand compositions to run unit and integration tests as part of the continuous integration process. Jenkins integration allows more complex pipelines.

LXC

LXC

LXC is a userspace interface for the Linux kernel containment features. Through a powerful API and simple tools, it lets Linux users easily create and manage system or application containers.

CAST.AI

CAST.AI

It is an AI-driven cloud optimization platform for Kubernetes. Instantly cut your cloud bill, prevent downtime, and 10X the power of DevOps.

k3s

k3s

Certified Kubernetes distribution designed for production workloads in unattended, resource-constrained, remote locations or inside IoT appliances. Supports something as small as a Raspberry Pi or as large as an AWS a1.4xlarge 32GiB server.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana