StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Container Registry
  4. Container Tools
  5. Docker Compose vs Kubernetes vs Skaffold

Docker Compose vs Kubernetes vs Skaffold

OverviewDecisionsComparisonAlternatives

Overview

Kubernetes
Kubernetes
Stacks61.2K
Followers52.8K
Votes685
Docker Compose
Docker Compose
Stacks22.3K
Followers16.5K
Votes501
GitHub Stars36.4K
Forks5.5K
Skaffold
Skaffold
Stacks86
Followers186
Votes0

Docker Compose vs Kubernetes vs Skaffold: What are the differences?

Introduction

Docker Compose, Kubernetes, and Skaffold are popular tools used in the deployment and management of containerized applications. While they all serve similar purposes, there are key differences that set them apart from each other.

  1. Deployment Scope: Docker Compose is ideal for small to medium-sized deployments on a single host, making it simpler and more suitable for local development. Kubernetes, on the other hand, is designed for large-scale deployments across multiple hosts, providing advanced features for scalability and fault tolerance. Skaffold sits in between, offering a streamlined development workflow for deploying applications to Kubernetes.

  2. Orchestration Abilities: Kubernetes excels in orchestration capabilities, providing features like automatic scaling, self-healing, service discovery, and load balancing. Skaffold primarily focuses on automating the development workflow rather than full-fledged orchestration. Docker Compose lacks the advanced orchestration capabilities of Kubernetes but is easier to set up and use for basic container deployments.

  3. Environment Management: Kubernetes offers robust environment management with features like namespaces, resource quotas, and network policies for fine-grained control over the application environment. Skaffold simplifies environment management through its declarative configuration files. Docker Compose provides a basic level of environment management by defining services, networks, and volumes within a single docker-compose file.

  4. Extensibility and Ecosystem: Kubernetes has a vast ecosystem of plugins, tools, and community support for extending its functionality and integrating with other systems. Skaffold also has a growing ecosystem but is more tailored towards Kubernetes-based workflows. Docker Compose, while versatile, has a more limited ecosystem compared to Kubernetes and Skaffold.

  5. Learning Curve: Docker Compose has a relatively low learning curve, making it easy for developers to get started with containerized applications. Kubernetes, on the other hand, has a steeper learning curve due to its complex architecture and extensive features. Skaffold falls in between, offering a balance of ease of use and scalability, making it accessible for developers with varying levels of expertise.

  6. Monitoring and Logging: Kubernetes provides robust monitoring and logging capabilities through integrations with tools like Prometheus, Grafana, and ELK stack. Skaffold integrates with existing monitoring and logging solutions available in the Kubernetes ecosystem. Docker Compose lacks built-in monitoring and logging features, requiring users to rely on external tools for this functionality.

In Summary, Docker Compose is suitable for simple deployments, Kubernetes excels in large-scale orchestration, while Skaffold offers a balanced workflow for developing and deploying applications to Kubernetes environments.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Kubernetes, Docker Compose, Skaffold

Simon
Simon

Senior Fullstack Developer at QUANTUSflow Software GmbH

Apr 27, 2020

DecidedonGitHubGitHubGitHub PagesGitHub PagesMarkdownMarkdown

Our whole DevOps stack consists of the following tools:

  • @{GitHub}|tool:27| (incl. @{GitHub Pages}|tool:683|/@{Markdown}|tool:1147| for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively @{Git}|tool:1046| as revision control system
  • @{SourceTree}|tool:1599| as @{Git}|tool:1046| GUI
  • @{Visual Studio Code}|tool:4202| as IDE
  • @{CircleCI}|tool:190| for continuous integration (automatize development process)
  • @{Prettier}|tool:7035| / @{TSLint}|tool:5561| / @{ESLint}|tool:3337| as code linter
  • @{SonarQube}|tool:2638| as quality gate
  • @{Docker}|tool:586| as container management (incl. @{Docker Compose}|tool:3136| for multi-container application management)
  • @{VirtualBox}|tool:774| for operating system simulation tests
  • @{Kubernetes}|tool:1885| as cluster management for docker containers
  • @{Heroku}|tool:133| for deploying in test environments
  • @{nginx}|tool:1052| as web server (preferably used as facade server in production environment)
  • @{SSLMate}|tool:2752| (using @{OpenSSL}|tool:3091|) for certificate management
  • @{Amazon EC2}|tool:18| (incl. @{Amazon S3}|tool:25|) for deploying in stage (production-like) and production environments
  • @{PostgreSQL}|tool:1028| as preferred database system
  • @{Redis}|tool:1031| as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
12.8M views12.8M
Comments
Anis
Anis

Founder at Odix

Nov 7, 2020

Review

I recommend this : -Spring reactive for back end : the fact it's reactive (async) it consumes half of the resources that a sync platform needs (so less CPU -> less money). -Angular : Web Front end ; it's gives you the possibility to use PWA which is a cheap replacement for a mobile app (but more less popular). -Docker images. -Kubernetes to orchestrate all the containers. -I Use Jenkins / blueocean, ansible for my CI/CD (with Github of course) -AWS of course : u can run a K8S cluster there, make it multi AZ (availability zones) to be highly available, use a load balancer and an auto scaler and ur good to go. -You can store data by taking any managed DB or u can deploy ur own (cheap but risky).

You pay less money, but u need some technical 2 - 3 guys to make that done.

Good luck

115k views115k
Comments
Michael
Michael

CEO at asencis Ltd

Jan 5, 2021

Needs advice

We develop rapidly with docker-compose orchestrated services, however, for production - we utilise the very best ideas that Kubernetes has to offer: SCALE! We can scale when needed, setting a maximum and minimum level of nodes for each application layer - scaling only when the load balancer needs it. This allowed us to reduce our devops costs by 40% whilst also maintaining an SLA of 99.87%.

272k views272k
Comments

Detailed Comparison

Kubernetes
Kubernetes
Docker Compose
Docker Compose
Skaffold
Skaffold

Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions.

With Compose, you define a multi-container application in a single file, then spin your application up in a single command which does everything that needs to be done to get it running.

Skaffold is a command line tool that facilitates continuous development for Kubernetes applications. You can iterate on your application source code locally then deploy to local or remote Kubernetes clusters. Skaffold handles the workflow for building, pushing and deploying your application. It can also be used in an automated context such as a CI/CD pipeline to leverage the same workflow and tooling when moving applications to production.

Lightweight, simple and accessible;Built for a multi-cloud world, public, private or hybrid;Highly modular, designed so that all of its components are easily swappable
-
No server-side component. No overhead to your cluster.;Detect changes in your source code and automatically build/push/deploy.;Image tag management. Stop worrying about updating the image tags in Kubernetes manifests to push out changes during development.;Supports existing tooling and workflows. Build and deploy APIs make each implementation composable to support many different workflows.;Support for multiple application components. Build and deploy only the pieces of your stack that have changed.;Deploy regularly when saving files or run one off deployments using the same configuration
Statistics
GitHub Stars
-
GitHub Stars
36.4K
GitHub Stars
-
GitHub Forks
-
GitHub Forks
5.5K
GitHub Forks
-
Stacks
61.2K
Stacks
22.3K
Stacks
86
Followers
52.8K
Followers
16.5K
Followers
186
Votes
685
Votes
501
Votes
0
Pros & Cons
Pros
  • 166
    Leading docker container management solution
  • 130
    Simple and powerful
  • 108
    Open source
  • 76
    Backed by google
  • 58
    The right abstractions
Cons
  • 16
    Steep learning curve
  • 15
    Poor workflow for development
  • 8
    Orchestrates only infrastructure
  • 4
    High resource requirements for on-prem clusters
  • 2
    Too heavy for simple systems
Pros
  • 123
    Multi-container descriptor
  • 110
    Fast development environment setup
  • 79
    Easy linking of containers
  • 68
    Simple yaml configuration
  • 60
    Easy setup
Cons
  • 9
    Tied to single machine
  • 5
    Still very volatile, changing syntax often
No community feedback yet
Integrations
Vagrant
Vagrant
Docker
Docker
Rackspace Cloud Servers
Rackspace Cloud Servers
Microsoft Azure
Microsoft Azure
Google Compute Engine
Google Compute Engine
Ansible
Ansible
Google Kubernetes Engine
Google Kubernetes Engine
Docker
Docker
Google Kubernetes Engine
Google Kubernetes Engine
Docker
Docker

What are some alternatives to Kubernetes, Docker Compose, Skaffold?

Rancher

Rancher

Rancher is an open source container management platform that includes full distributions of Kubernetes, Apache Mesos and Docker Swarm, and makes it simple to operate container clusters on any cloud or infrastructure platform.

Docker Swarm

Docker Swarm

Swarm serves the standard Docker API, so any tool which already communicates with a Docker daemon can use Swarm to transparently scale to multiple hosts: Dokku, Compose, Krane, Deis, DockerUI, Shipyard, Drone, Jenkins... and, of course, the Docker client itself.

Tutum

Tutum

Tutum lets developers easily manage and run lightweight, portable, self-sufficient containers from any application. AWS-like control, Heroku-like ease. The same container that a developer builds and tests on a laptop can run at scale in Tutum.

Portainer

Portainer

It is a universal container management tool. It works with Kubernetes, Docker, Docker Swarm and Azure ACI. It allows you to manage containers without needing to know platform-specific code.

Codefresh

Codefresh

Automate and parallelize testing. Codefresh allows teams to spin up on-demand compositions to run unit and integration tests as part of the continuous integration process. Jenkins integration allows more complex pipelines.

CAST.AI

CAST.AI

It is an AI-driven cloud optimization platform for Kubernetes. Instantly cut your cloud bill, prevent downtime, and 10X the power of DevOps.

k3s

k3s

Certified Kubernetes distribution designed for production workloads in unattended, resource-constrained, remote locations or inside IoT appliances. Supports something as small as a Raspberry Pi or as large as an AWS a1.4xlarge 32GiB server.

Flocker

Flocker

Flocker is a data volume manager and multi-host Docker cluster management tool. With it you can control your data using the same tools you use for your stateless applications. This means that you can run your databases, queues and key-value stores in Docker and move them around as easily as the rest of your app.

Kitematic

Kitematic

Simple Docker App management for Mac OS X

Docker Machine

Docker Machine

Machine lets you create Docker hosts on your computer, on cloud providers, and inside your own data center. It creates servers, installs Docker on them, then configures the Docker client to talk to them.

Related Comparisons

GitHub
Bitbucket

Bitbucket vs GitHub vs GitLab

GitHub
Bitbucket

AWS CodeCommit vs Bitbucket vs GitHub

Kubernetes
Rancher

Docker Swarm vs Kubernetes vs Rancher

gulp
Grunt

Grunt vs Webpack vs gulp

Graphite
Kibana

Grafana vs Graphite vs Kibana