Need advice about which tool to choose?Ask the StackShare community!

CuPy

0
6
+ 1
0
Orchest

0
10
+ 1
0
Add tool

Orchest vs CuPy: What are the differences?

What is Orchest? An open source tool for creating data science pipelines. It is a web-based data science tool that works on top of your filesystem allowing you to use your editor of choice. With Orchest you get to focus on visually building and iterating on your pipeline ideas. Under the hood Orchest runs a collection of containers to provide a scalable platform that can run on your laptop as well as on a large scale cloud cluster.

What is CuPy? A NumPy-compatible matrix library accelerated by CUDA. It is an open-source matrix library accelerated with NVIDIA CUDA. CuPy provides GPU accelerated computing with Python. It uses CUDA-related libraries including cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT and NCCL to make full use of the GPU architecture.

Orchest and CuPy can be categorized as "Data Science" tools.

Some of the features offered by Orchest are:

  • Visual pipeline editor
  • Executable notebooks
  • Open source

On the other hand, CuPy provides the following key features:

  • It's interface is highly compatible with NumPy in most cases it can be used as a drop-in replacement
  • Supports various methods, indexing, data types, broadcasting and more
  • You can easily make a custom CUDA kernel if you want to make your code run faster, requiring only a small code snippet of C++

CuPy is an open source tool with 4.45K GitHub stars and 402 GitHub forks. Here's a link to CuPy's open source repository on GitHub.

Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More

Sign up to add or upvote prosMake informed product decisions

Sign up to add or upvote consMake informed product decisions

No Stats

What is CuPy?

It is an open-source matrix library accelerated with NVIDIA CUDA. CuPy provides GPU accelerated computing with Python. It uses CUDA-related libraries including cuBLAS, cuDNN, cuRand, cuSolver, cuSPARSE, cuFFT and NCCL to make full use of the GPU architecture.

What is Orchest?

It is a web-based data science tool that works on top of your filesystem allowing you to use your editor of choice. With Orchest you get to focus on visually building and iterating on your pipeline ideas. Under the hood Orchest runs a collection of containers to provide a scalable platform that can run on your laptop as well as on a large scale cloud cluster.

Need advice about which tool to choose?Ask the StackShare community!

Jobs that mention CuPy and Orchest as a desired skillset

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with CuPy?
What tools integrate with Orchest?

Sign up to get full access to all the tool integrationsMake informed product decisions

What are some alternatives to CuPy and Orchest?
NumPy
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.
Numba
It translates Python functions to optimized machine code at runtime using the industry-standard LLVM compiler library. It offers a range of options for parallelising Python code for CPUs and GPUs, often with only minor code changes.
PyTorch
PyTorch is not a Python binding into a monolothic C++ framework. It is built to be deeply integrated into Python. You can use it naturally like you would use numpy / scipy / scikit-learn etc.
CUDA
A parallel computing platform and application programming interface model,it enables developers to speed up compute-intensive applications by harnessing the power of GPUs for the parallelizable part of the computation.
TensorFlow
TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.
See all alternatives