Need advice about which tool to choose?Ask the StackShare community!

Cassandra

3.2K
3.1K
+ 1
492
TimescaleDB

158
268
+ 1
41
Add tool

Cassandra vs TimescaleDB: What are the differences?

What is Cassandra? A partitioned row store. Rows are organized into tables with a required primary key. Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

What is TimescaleDB? Scalable time-series database optimized for fast ingest and complex queries. Purpose-built as a PostgreSQL extension. TimescaleDB is the only open-source time-series database that natively supports full-SQL at scale, combining the power, reliability, and ease-of-use of a relational database with the scalability typically seen in NoSQL databases.

Cassandra and TimescaleDB can be primarily classified as "Databases" tools.

Cassandra and TimescaleDB are both open source tools. TimescaleDB with 7.21K GitHub stars and 382 forks on GitHub appears to be more popular than Cassandra with 5.23K GitHub stars and 2.33K GitHub forks.

Uber Technologies, Spotify, and Instagram are some of the popular companies that use Cassandra, whereas TimescaleDB is used by ScreenAware, WakaTime, and AgFlow. Cassandra has a broader approval, being mentioned in 337 company stacks & 231 developers stacks; compared to TimescaleDB, which is listed in 15 company stacks and 3 developer stacks.

Advice on Cassandra and TimescaleDB
Umair Iftikhar
Technical Architect at Vappar · | 3 upvotes · 138.2K views
Needs advice
on
TimescaleDBTimescaleDBDruidDruid
and
CassandraCassandra

Developing a solution that collects Telemetry Data from different devices, nearly 1000 devices minimum and maximum 12000. Each device is sending 2 packets in 1 second. This is time-series data, and this data definition and different reports are saved on PostgreSQL. Like Building information, maintenance records, etc. I want to know about the best solution. This data is required for Math and ML to run different algorithms. Also, data is raw without definitions and information stored in PostgreSQL. Initially, I went with TimescaleDB due to PostgreSQL support, but to increase in sites, I started facing many issues with timescale DB in terms of flexibility of storing data.

My major requirement is also the replication of the database for reporting and different purposes. You may also suggest other options other than Druid and Cassandra. But an open source solution is appreciated.

See more
Replies (1)
Recommends
MongoDBMongoDB

Hi Umair, Did you try MongoDB. We are using MongoDB on a production environment and collecting data from devices like your scenario. We have a MongoDB cluster with three replicas. Data from devices are being written to the master node and real-time dashboard UI is using the secondary nodes for read operations. With this setup write operations are not affected by read operations too.

See more
Needs advice
on
TimescaleDBTimescaleDBMongoDBMongoDB
and
InfluxDBInfluxDB

We are building an IOT service with heavy write throughput and fewer reads (we need downsampling records). We prefer to have good reliability when comes to data and prefer to have data retention based on policies.

So, we are looking for what is the best underlying DB for ingesting a lot of data and do queries easily

See more
Replies (3)
Yaron Lavi
Recommends
PostgreSQLPostgreSQL

We had a similar challenge. We started with DynamoDB, Timescale, and even InfluxDB and Mongo - to eventually settle with PostgreSQL. Assuming the inbound data pipeline in queued (for example, Kinesis/Kafka -> S3 -> and some Lambda functions), PostgreSQL gave us a We had a similar challenge. We started with DynamoDB, Timescale and even InfluxDB and Mongo - to eventually settle with PostgreSQL. Assuming the inbound data pipeline in queued (for example, Kinesis/Kafka -> S3 -> and some Lambda functions), PostgreSQL gave us better performance by far.

See more
Recommends
DruidDruid

Druid is amazing for this use case and is a cloud-native solution that can be deployed on any cloud infrastructure or on Kubernetes. - Easy to scale horizontally - Column Oriented Database - SQL to query data - Streaming and Batch Ingestion - Native search indexes It has feature to work as TimeSeriesDB, Datawarehouse, and has Time-optimized partitioning.

See more
Ankit Malik
Software Developer at CloudCover · | 3 upvotes · 83.5K views
Recommends
Google BigQueryGoogle BigQuery

if you want to find a serverless solution with capability of a lot of storage and SQL kind of capability then google bigquery is the best solution for that.

See more
Vinay Mehta
Needs advice
on
ScyllaScylla
and
CassandraCassandra

The problem I have is - we need to process & change(update/insert) 55M Data every 2 min and this updated data to be available for Rest API for Filtering / Selection. Response time for Rest API should be less than 1 sec.

The most important factors for me are processing and storing time of 2 min. There need to be 2 views of Data One is for Selection & 2. Changed data.

See more
Replies (4)
Alex Peake
Recommends
CassandraCassandra

Cassandra is quite capable of the task, in a highly available way, given appropriate scaling of the system. Remember that updates are only inserts, and that efficient retrieval is only by key (which can be a complex key). Talking of keys, make sure that the keys are well distributed.

See more
Recommends
ScyllaScylla

By 55M do you mean 55 million entity changes per 2 minutes? It is relatively high, means almost 460k per second. If I had to choose between Scylla or Cassandra, I would opt for Scylla as it is promising better performance for simple operations. However, maybe it would be worth to consider yet another alternative technology. Take into consideration required consistency, reliability and high availability and you may realize that there are more suitable once. Rest API should not be the main driver, because you can always develop the API yourself, if not supported by given technology.

See more
Recommends
ScyllaScylla

Scylla can handle 1M/s events with a simple data model quite easily. The api to query is CQL, we have REST api but that's for control/monitoring

See more
Pankaj Soni
Chief Technical Officer at Software Joint · | 2 upvotes · 56.6K views
Recommends
CassandraCassandra

i love syclla for pet projects however it's license which is based on server model is an issue. thus i recommend cassandra

See more
Decisions about Cassandra and TimescaleDB
Benoit Larroque
Principal Engineer at Sqreen · | 2 upvotes · 57.3K views

I chose TimescaleDB because to be the backend system of our production monitoring system. We needed to be able to keep track of multiple high cardinality dimensions.

The drawbacks of this decision are our monitoring system is a bit more ad hoc than it used to (New Relic Insights)

We are combining this with Grafana for display and Telegraf for data collection

See more
Get Advice from developers at your company using Private StackShare. Sign up for Private StackShare.
Learn More
Pros of Cassandra
Pros of TimescaleDB
  • 114
    Distributed
  • 95
    High performance
  • 80
    High availability
  • 74
    Easy scalability
  • 52
    Replication
  • 26
    Multi datacenter deployments
  • 26
    Reliable
  • 8
    OLTP
  • 7
    Open source
  • 7
    Schema optional
  • 2
    Workload separation (via MDC)
  • 1
    Fast
  • 8
    Open source
  • 7
    Easy Query Language
  • 6
    Time-series data analysis
  • 5
    Established postgresql API and support
  • 4
    Reliable
  • 2
    Paid support for automatic Retention Policy
  • 2
    Fast and scalable
  • 2
    Chunk-based compression
  • 2
    Postgres integration
  • 2
    High-performance
  • 1
    Case studies

Sign up to add or upvote prosMake informed product decisions

Cons of Cassandra
Cons of TimescaleDB
  • 2
    Reliability of replication
  • 1
    Updates
  • 3
    Licensing issues when running on managed databases

Sign up to add or upvote consMake informed product decisions

What is Cassandra?

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

What is TimescaleDB?

TimescaleDB: An open-source database built for analyzing time-series data with the power and convenience of SQL — on premise, at the edge, or in the cloud.

Need advice about which tool to choose?Ask the StackShare community!

What companies use Cassandra?
What companies use TimescaleDB?
See which teams inside your own company are using Cassandra or TimescaleDB.
Sign up for Private StackShareLearn More

Sign up to get full access to all the companiesMake informed product decisions

What tools integrate with Cassandra?
What tools integrate with TimescaleDB?

Sign up to get full access to all the tool integrationsMake informed product decisions

Blog Posts

What are some alternatives to Cassandra and TimescaleDB?
HBase
Apache HBase is an open-source, distributed, versioned, column-oriented store modeled after Google' Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, HBase provides Bigtable-like capabilities on top of Apache Hadoop.
Hadoop
The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using simple programming models. It is designed to scale up from single servers to thousands of machines, each offering local computation and storage.
Redis
Redis is an open source, BSD licensed, advanced key-value store. It is often referred to as a data structure server since keys can contain strings, hashes, lists, sets and sorted sets.
Couchbase
Developed as an alternative to traditionally inflexible SQL databases, the Couchbase NoSQL database is built on an open source foundation and architected to help developers solve real-world problems and meet high scalability demands.
MySQL
The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.
See all alternatives