StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. Databases
  4. Databases
  5. AWS Lambda vs Oracle

AWS Lambda vs Oracle

OverviewDecisionsComparisonAlternatives

Overview

Oracle
Oracle
Stacks2.6K
Followers1.8K
Votes113
AWS Lambda
AWS Lambda
Stacks26.0K
Followers18.8K
Votes432

AWS Lambda vs Oracle: What are the differences?

Introduction

In this markdown, we will compare AWS Lambda and Oracle and highlight their key differences.

  1. Scalability: AWS Lambda is designed to automatically scale in response to incoming requests. It can handle a high volume of requests without any manual intervention. On the other hand, Oracle may require manual provisioning and scaling of resources to handle increased workload.

  2. Pricing Model: AWS Lambda follows a pay-per-use pricing model, where you are billed only for the actual compute time of your function. It does not require any upfront costs or long-term commitments. In contrast, Oracle may have a different pricing structure, which might include upfront costs and/or long-term contracts.

  3. Supported Languages: AWS Lambda supports a wide range of programming languages, including JavaScript, Python, Java, Ruby, and more. This allows developers to use the language they are most comfortable with. On the other hand, Oracle may have limitations in terms of the programming languages it supports.

  4. Integration with Other Services: AWS Lambda seamlessly integrates with other AWS services, such as Amazon S3, DynamoDB, and others. This makes it easier to build serverless applications using a variety of AWS services. Oracle may have its own set of integration options, but they may not be as extensive as AWS Lambda's.

  5. Management and Monitoring: AWS Lambda provides a rich set of management and monitoring tools, such as CloudWatch, to help track the performance and health of your functions. It also offers detailed logging capabilities for troubleshooting and debugging. Oracle may have its own management and monitoring tools, but they may not be as comprehensive as AWS Lambda's.

  6. Ecosystem and Community: AWS Lambda has a large and active community of developers, which means there are plenty of resources, tutorials, and libraries available for developers to leverage. This allows for faster development and troubleshooting. Oracle may have its own community, but it may not be as large or well-established as AWS Lambda's.

In Summary, AWS Lambda offers automatic scalability, a pay-per-use pricing model, support for multiple languages, extensive integration options, robust management and monitoring tools, and a large developer community. Oracle may have its own strengths, but it may not match up to AWS Lambda in terms of these key aspects.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Oracle, AWS Lambda

Tim
Tim

CTO at Checkly Inc.

Sep 18, 2019

Needs adviceonHerokuHerokuAWS LambdaAWS Lambda

When adding a new feature to Checkly rearchitecting some older piece, I tend to pick Heroku for rolling it out. But not always, because sometimes I pick AWS Lambda . The short story:

  • Developer Experience trumps everything.
  • AWS Lambda is cheap. Up to a limit though. This impact not only your wallet.
  • If you need geographic spread, AWS is lonely at the top.

The setup

Recently, I was doing a brainstorm at a startup here in Berlin on the future of their infrastructure. They were ready to move on from their initial, almost 100% Ec2 + Chef based setup. Everything was on the table. But we crossed out a lot quite quickly:

  • Pure, uncut, self hosted Kubernetes — way too much complexity
  • Managed Kubernetes in various flavors — still too much complexity
  • Zeit — Maybe, but no Docker support
  • Elastic Beanstalk — Maybe, bit old but does the job
  • Heroku
  • Lambda

It became clear a mix of PaaS and FaaS was the way to go. What a surprise! That is exactly what I use for Checkly! But when do you pick which model?

I chopped that question up into the following categories:

  • Developer Experience / DX 🤓
  • Ops Experience / OX 🐂 (?)
  • Cost 💵
  • Lock in 🔐

Read the full post linked below for all details

357k views357k
Comments
Mark
Mark

Nov 2, 2020

Needs adviceonMicrosoft AzureMicrosoft Azure

Need advice on what platform, systems and tools to use.

Evaluating whether to start a new digital business for which we will need to build a website that handles all traffic. Website only right now. May add smartphone apps later. No desktop app will ever be added. Website to serve various countries and languages. B2B and B2C type customers. Need to handle heavy traffic, be low cost, and scale well.

We are open to either build it on AWS or on Microsoft Azure.

Apologies if I'm leaving out some info. My first post. :) Thanks in advance!

133k views133k
Comments
Daniel
Daniel

Data Engineer at Dimensigon

Jul 18, 2020

Decided

We have chosen Tibero over Oracle because we want to offer a PL/SQL-as-a-Service that the users can deploy in any Cloud without concerns from our website at some standard cost. With Oracle Database, developers would have to worry about what they implement and the related costs of each feature but the licensing model from Tibero is just 1 price and we have all features included, so we don't have to worry and developers using our SQLaaS neither. PostgreSQL would be open source. We have chosen Tibero over Oracle because we want to offer a PL/SQL that you can deploy in any Cloud without concerns. PostgreSQL would be the open source option but we need to offer an SQLaaS with encryption and more enterprise features in the background and best value option we have found, it was Tibero Database for PL/SQL-based applications.

496k views496k
Comments

Detailed Comparison

Oracle
Oracle
AWS Lambda
AWS Lambda

Oracle Database is an RDBMS. An RDBMS that implements object-oriented features such as user-defined types, inheritance, and polymorphism is called an object-relational database management system (ORDBMS). Oracle Database has extended the relational model to an object-relational model, making it possible to store complex business models in a relational database.

AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security.

-
Extend other AWS services with custom logic;Build custom back-end services;Completely Automated Administration;Built-in Fault Tolerance;Automatic Scaling;Integrated Security Model;Bring Your Own Code;Pay Per Use;Flexible Resource Model
Statistics
Stacks
2.6K
Stacks
26.0K
Followers
1.8K
Followers
18.8K
Votes
113
Votes
432
Pros & Cons
Pros
  • 44
    Reliable
  • 33
    Enterprise
  • 15
    High Availability
  • 5
    Expensive
  • 5
    Hard to maintain
Cons
  • 14
    Expensive
Pros
  • 129
    No infrastructure
  • 83
    Cheap
  • 70
    Quick
  • 59
    Stateless
  • 47
    No deploy, no server, great sleep
Cons
  • 7
    Cant execute ruby or go
  • 3
    Compute time limited
  • 1
    Can't execute PHP w/o significant effort

What are some alternatives to Oracle, AWS Lambda?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase