StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. NoSQL Databases
  4. NOSQL Database As A Service
  5. AWS Lambda vs Azure Cosmos DB

AWS Lambda vs Azure Cosmos DB

OverviewDecisionsComparisonAlternatives

Overview

Azure Cosmos DB
Azure Cosmos DB
Stacks594
Followers1.1K
Votes130
AWS Lambda
AWS Lambda
Stacks26.0K
Followers18.8K
Votes432

AWS Lambda vs Azure Cosmos DB: What are the differences?

Developers describe AWS Lambda as "Automatically run code in response to modifications to objects in Amazon S3 buckets, messages in Kinesis streams, or updates in DynamoDB". AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security. On the other hand, Azure Cosmos DB is detailed as "A fully-managed, globally distributed NoSQL database service". Azure DocumentDB is a fully managed NoSQL database service built for fast and predictable performance, high availability, elastic scaling, global distribution, and ease of development.

AWS Lambda can be classified as a tool in the "Serverless / Task Processing" category, while Azure Cosmos DB is grouped under "NoSQL Database as a Service".

Some of the features offered by AWS Lambda are:

  • Extend other AWS services with custom logic
  • Build custom back-end services
  • Completely Automated Administration

On the other hand, Azure Cosmos DB provides the following key features:

  • Fully managed with 99.99% Availability SLA
  • Elastically and highly scalable (both throughput and storage)
  • Predictable low latency: <10ms @ P99 reads and <15ms @ P99 fully-indexed writes

"No infrastructure" is the top reason why over 121 developers like AWS Lambda, while over 13 developers mention "Best-of-breed NoSQL features" as the leading cause for choosing Azure Cosmos DB.

According to the StackShare community, AWS Lambda has a broader approval, being mentioned in 1022 company stacks & 612 developers stacks; compared to Azure Cosmos DB, which is listed in 24 company stacks and 24 developer stacks.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Azure Cosmos DB, AWS Lambda

Tim
Tim

CTO at Checkly Inc.

Sep 18, 2019

Needs adviceonHerokuHerokuAWS LambdaAWS Lambda

When adding a new feature to Checkly rearchitecting some older piece, I tend to pick Heroku for rolling it out. But not always, because sometimes I pick AWS Lambda . The short story:

  • Developer Experience trumps everything.
  • AWS Lambda is cheap. Up to a limit though. This impact not only your wallet.
  • If you need geographic spread, AWS is lonely at the top.

The setup

Recently, I was doing a brainstorm at a startup here in Berlin on the future of their infrastructure. They were ready to move on from their initial, almost 100% Ec2 + Chef based setup. Everything was on the table. But we crossed out a lot quite quickly:

  • Pure, uncut, self hosted Kubernetes — way too much complexity
  • Managed Kubernetes in various flavors — still too much complexity
  • Zeit — Maybe, but no Docker support
  • Elastic Beanstalk — Maybe, bit old but does the job
  • Heroku
  • Lambda

It became clear a mix of PaaS and FaaS was the way to go. What a surprise! That is exactly what I use for Checkly! But when do you pick which model?

I chopped that question up into the following categories:

  • Developer Experience / DX 🤓
  • Ops Experience / OX 🐂 (?)
  • Cost 💵
  • Lock in 🔐

Read the full post linked below for all details

357k views357k
Comments

Detailed Comparison

Azure Cosmos DB
Azure Cosmos DB
AWS Lambda
AWS Lambda

Azure DocumentDB is a fully managed NoSQL database service built for fast and predictable performance, high availability, elastic scaling, global distribution, and ease of development.

AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security.

Fully managed with 99.99% Availability SLA;Elastically and highly scalable (both throughput and storage);Predictable low latency: <10ms @ P99 reads and <15ms @ P99 fully-indexed writes;Globally distributed with multi-region replication;Rich SQL queries over schema-agnostic automatic indexing;JavaScript language integrated multi-record ACID transactions with snapshot isolation;Well-defined tunable consistency models: Strong, Bounded Staleness, Session, and Eventual
Extend other AWS services with custom logic;Build custom back-end services;Completely Automated Administration;Built-in Fault Tolerance;Automatic Scaling;Integrated Security Model;Bring Your Own Code;Pay Per Use;Flexible Resource Model
Statistics
Stacks
594
Stacks
26.0K
Followers
1.1K
Followers
18.8K
Votes
130
Votes
432
Pros & Cons
Pros
  • 28
    Best-of-breed NoSQL features
  • 22
    High scalability
  • 15
    Globally distributed
  • 14
    Automatic indexing over flexible json data model
  • 10
    Tunable consistency
Cons
  • 18
    Pricing
  • 4
    Poor No SQL query support
Pros
  • 129
    No infrastructure
  • 83
    Cheap
  • 70
    Quick
  • 59
    Stateless
  • 47
    No deploy, no server, great sleep
Cons
  • 7
    Cant execute ruby or go
  • 3
    Compute time limited
  • 1
    Can't execute PHP w/o significant effort
Integrations
Azure Machine Learning
Azure Machine Learning
MongoDB
MongoDB
Hadoop
Hadoop
Java
Java
Azure Functions
Azure Functions
Azure Container Service
Azure Container Service
Azure Storage
Azure Storage
Azure Websites
Azure Websites
Apache Spark
Apache Spark
Python
Python
No integrations available

What are some alternatives to Azure Cosmos DB, AWS Lambda?

Amazon DynamoDB

Amazon DynamoDB

With it , you can offload the administrative burden of operating and scaling a highly available distributed database cluster, while paying a low price for only what you use.

Cloud Firestore

Cloud Firestore

Cloud Firestore is a NoSQL document database that lets you easily store, sync, and query data for your mobile and web apps - at global scale.

Azure Functions

Azure Functions

Azure Functions is an event driven, compute-on-demand experience that extends the existing Azure application platform with capabilities to implement code triggered by events occurring in virtually any Azure or 3rd party service as well as on-premises systems.

Google Cloud Run

Google Cloud Run

A managed compute platform that enables you to run stateless containers that are invocable via HTTP requests. It's serverless by abstracting away all infrastructure management.

Serverless

Serverless

Build applications comprised of microservices that run in response to events, auto-scale for you, and only charge you when they run. This lowers the total cost of maintaining your apps, enabling you to build more logic, faster. The Framework uses new event-driven compute services, like AWS Lambda, Google CloudFunctions, and more.

Cloudant

Cloudant

Cloudant’s distributed database as a service (DBaaS) allows developers of fast-growing web and mobile apps to focus on building and improving their products, instead of worrying about scaling and managing databases on their own.

Google Cloud Functions

Google Cloud Functions

Construct applications from bite-sized business logic billed to the nearest 100 milliseconds, only while your code is running

Google Cloud Bigtable

Google Cloud Bigtable

Google Cloud Bigtable offers you a fast, fully managed, massively scalable NoSQL database service that's ideal for web, mobile, and Internet of Things applications requiring terabytes to petabytes of data. Unlike comparable market offerings, Cloud Bigtable doesn't require you to sacrifice speed, scale, or cost efficiency when your applications grow. Cloud Bigtable has been battle-tested at Google for more than 10 years—it's the database driving major applications such as Google Analytics and Gmail.

Knative

Knative

Knative provides a set of middleware components that are essential to build modern, source-centric, and container-based applications that can run anywhere: on premises, in the cloud, or even in a third-party data center

OpenFaaS

OpenFaaS

Serverless Functions Made Simple for Docker and Kubernetes

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase