Need advice about which tool to choose?Ask the StackShare community!
ArangoDB vs InfluxDB: What are the differences?
ArangoDB: A distributed open-source database with a flexible data model for documents, graphs, and key-values. A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions; InfluxDB: An open-source distributed time series database with no external dependencies. InfluxDB is a scalable datastore for metrics, events, and real-time analytics. It has a built-in HTTP API so you don't have to write any server side code to get up and running InfluxDB is designed to be scalable, simple to install and manage, and fast to get data in and out..
ArangoDB and InfluxDB can be primarily classified as "Databases" tools.
Some of the features offered by ArangoDB are:
- multi-model nosql db
- acid
- transactions
On the other hand, InfluxDB provides the following key features:
- Time-Centric Functions
- Scalable Metrics
- Events
"Grahps and documents in one DB" is the top reason why over 24 developers like ArangoDB, while over 36 developers mention "Time-series data analysis" as the leading cause for choosing InfluxDB.
ArangoDB and InfluxDB are both open source tools. InfluxDB with 16.7K GitHub stars and 2.38K forks on GitHub appears to be more popular than ArangoDB with 8.22K GitHub stars and 576 GitHub forks.
SimpleCrypto, Impossible Software, and capscale are some of the popular companies that use InfluxDB, whereas ArangoDB is used by AresRPG, Stepsize, and Brainhub. InfluxDB has a broader approval, being mentioned in 119 company stacks & 39 developers stacks; compared to ArangoDB, which is listed in 11 company stacks and 15 developer stacks.
Hello All, I'm building an app that will enable users to create documents using ckeditor or TinyMCE editor. The data is then stored in a database and retrieved to display to the user, these docs can contain image data also. The number of pages generated for a single document can go up to 1000. Therefore by design, each page is stored in a separate JSON. I'm wondering which database is the right one to choose between ArangoDB and PostgreSQL. Your thoughts, advice please. Thanks, Kashyap
Which Graph DB features are you planning to use?
I have a lot of data that's currently sitting in a MariaDB database, a lot of tables that weigh 200gb with indexes. Most of the large tables have a date column which is always filtered, but there are usually 4-6 additional columns that are filtered and used for statistics. I'm trying to figure out the best tool for storing and analyzing large amounts of data. Preferably self-hosted or a cheap solution. The current problem I'm running into is speed. Even with pretty good indexes, if I'm trying to load a large dataset, it's pretty slow.
Druid Could be an amazing solution for your use case, My understanding, and the assumption is you are looking to export your data from MariaDB for Analytical workload. It can be used for time series database as well as a data warehouse and can be scaled horizontally once your data increases. It's pretty easy to set up on any environment (Cloud, Kubernetes, or Self-hosted nix system). Some important features which make it a perfect solution for your use case. 1. It can do streaming ingestion (Kafka, Kinesis) as well as batch ingestion (Files from Local & Cloud Storage or Databases like MySQL, Postgres). In your case MariaDB (which has the same drivers to MySQL) 2. Columnar Database, So you can query just the fields which are required, and that runs your query faster automatically. 3. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. 4. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures 5. Gives ana amazing centralized UI to manage data sources, query, tasks.
We are building an IOT service with heavy write throughput and fewer reads (we need downsampling records). We prefer to have good reliability when comes to data and prefer to have data retention based on policies.
So, we are looking for what is the best underlying DB for ingesting a lot of data and do queries easily
We had a similar challenge. We started with DynamoDB, Timescale, and even InfluxDB and Mongo - to eventually settle with PostgreSQL. Assuming the inbound data pipeline in queued (for example, Kinesis/Kafka -> S3 -> and some Lambda functions), PostgreSQL gave us a We had a similar challenge. We started with DynamoDB, Timescale and even InfluxDB and Mongo - to eventually settle with PostgreSQL. Assuming the inbound data pipeline in queued (for example, Kinesis/Kafka -> S3 -> and some Lambda functions), PostgreSQL gave us better performance by far.
Druid is amazing for this use case and is a cloud-native solution that can be deployed on any cloud infrastructure or on Kubernetes. - Easy to scale horizontally - Column Oriented Database - SQL to query data - Streaming and Batch Ingestion - Native search indexes It has feature to work as TimeSeriesDB, Datawarehouse, and has Time-optimized partitioning.
if you want to find a serverless solution with capability of a lot of storage and SQL kind of capability then google bigquery is the best solution for that.
I chose TimescaleDB because to be the backend system of our production monitoring system. We needed to be able to keep track of multiple high cardinality dimensions.
The drawbacks of this decision are our monitoring system is a bit more ad hoc than it used to (New Relic Insights)
We are combining this with Grafana for display and Telegraf for data collection
Pros of ArangoDB
- Grahps and documents in one DB37
- Intuitive and rich query language26
- Good documentation25
- Open source25
- Joins for collections21
- Foxx is great platform15
- Great out of the box web interface with API playground14
- Good driver support6
- Low maintenance efforts6
- Clustering6
- Easy microservice creation with foxx5
- You can write true backendless apps4
- Managed solution available2
- Performance0
Pros of InfluxDB
- Time-series data analysis59
- Easy setup, no dependencies30
- Fast, scalable & open source24
- Open source21
- Real-time analytics20
- Continuous Query support6
- Easy Query Language5
- HTTP API4
- Out-of-the-box, automatic Retention Policy4
- Offers Enterprise version1
- Free Open Source version1
Sign up to add or upvote prosMake informed product decisions
Cons of ArangoDB
- Web ui has still room for improvement3
- No support for blueprints standard, using custom AQL2
Cons of InfluxDB
- Instability4
- Proprietary query language1
- HA or Clustering is only in paid version1