StackShareStackShare
Follow on
StackShare

Discover and share technology stacks from companies around the world.

Follow on

© 2025 StackShare. All rights reserved.

Product

  • Stacks
  • Tools
  • Feed

Company

  • About
  • Contact

Legal

  • Privacy Policy
  • Terms of Service
  1. Stackups
  2. Application & Data
  3. NoSQL Databases
  4. NOSQL Database As A Service
  5. Amazon DynamoDB vs Couchbase

Amazon DynamoDB vs Couchbase

OverviewDecisionsComparisonAlternatives

Overview

Amazon DynamoDB
Amazon DynamoDB
Stacks4.0K
Followers3.2K
Votes195
Couchbase
Couchbase
Stacks505
Followers606
Votes110

Amazon DynamoDB vs Couchbase: What are the differences?

Introduction

Amazon DynamoDB and Couchbase are both popular NoSQL databases used for storing and retrieving large volumes of data. While they share some similarities, there are several key differences between these two databases.

  1. Data Model: One of the main differences between DynamoDB and Couchbase is their data model. DynamoDB uses a key-value data model, where each item is identified by a unique primary key. In contrast, Couchbase uses a document data model, where data is stored as JSON documents with a unique key. This difference in data models allows for different querying and data manipulation capabilities.

  2. Scalability: DynamoDB is known for its seamless scalability. It provides automatic horizontal scaling through built-in sharding, allowing users to handle high volumes of traffic without any manual intervention. On the other hand, Couchbase also offers scalability but requires manual partitioning and distribution of data across nodes. This manual process can be time-consuming and complex.

  3. Consistency Model: DynamoDB offers eventual consistency by default, meaning that changes made to the data may not be immediately reflected in all copies of the data. However, it also provides strong consistency as an option for specific read operations. In contrast, Couchbase offers strong consistency by default, ensuring that all copies of data are immediately consistent. Users can choose to relax consistency requirements if needed.

  4. Querying Capabilities: DynamoDB relies on secondary indexes for querying data. It supports basic query operations but lacks advanced querying capabilities such as joins and aggregations. In contrast, Couchbase provides a powerful query language called N1QL (pronounced nickel) that supports SQL-like queries with joins, aggregations, and advanced filtering capabilities.

  5. Data Distribution: DynamoDB automatically replicates data across multiple Availability Zones to ensure high availability and durability. It also provides global tables for distributing data across multiple regions. Couchbase, on the other hand, allows users to manually configure data replication and distribution across nodes and clusters, providing more control over data placement.

  6. Integration and Ecosystem: DynamoDB is tightly integrated with other AWS services, making it a preferred choice for users already using AWS infrastructure. It also has a mature ecosystem of SDKs, tools, and libraries. Couchbase, on the other hand, has its own ecosystem and can be used in a variety of environments, including hybrid and multi-cloud setups. It offers integrations with various technologies and frameworks.

In summary, DynamoDB and Couchbase differ in their data models, scalability approaches, consistency models, querying capabilities, data distribution methods, and integration ecosystems. The choice between these databases depends on specific requirements, such as the nature of the data, workload patterns, and existing infrastructure.

Share your Stack

Help developers discover the tools you use. Get visibility for your team's tech choices and contribute to the community's knowledge.

View Docs
CLI (Node.js)
or
Manual

Advice on Amazon DynamoDB, Couchbase

Gabriel
Gabriel

CEO at Naologic

Nov 2, 2020

Decided

After using couchbase for over 4 years, we migrated to MongoDB and that was the best decision ever! I'm very disappointed with Couchbase's technical performance. Even though we received enterprise support and were a listed Couchbase Partner, the experience was horrible. With every contact, the sales team was trying to get me on a $7k+ license for access to features all other open source NoSQL databases get for free.

Here's why you should not use Couchbase

Full-text search Queries The full-text search often returns a different number of results if you run the same query multiple types

N1QL queries Configuring the indexes correctly is next to impossible. It's poorly documented and nobody seems to know what to do, even the Couchbase support engineers have no clue what they are doing.

Community support I posted several problems on the forum and I never once received a useful answer

Enterprise support It's very expensive. $7k+. The team constantly tried to get me to buy even though the community edition wasn't working great

Autonomous Operator It's actually just a poorly configured Kubernetes role that no matter what I did, I couldn't get it to work. The support team was useless. Same lack of documentation. If you do get it to work, you need 6 servers at least to meet their minimum requirements.

Couchbase cloud Typical for Couchbase, the user experience is awful and I could never get it to work.

Minimum requirements The minimum requirements in production are 6 servers. On AWS the calculated monthly cost would be ~$600. We achieved better performance using a $16 MongoDB instance on the Mongo Atlas Cloud

writing queries is a nightmare While N1QL is similar to SQL and it's easier to write because of the familiarity, that isn't entirely true. The "smart index" that Couchbase advertises is not smart at all. Creating an index with 5 fields, and only using 4 of them won't result in Couchbase using the same index, so you have to create a new one.

Couchbase UI The UI that comes with every database deployment is full of bugs, barely functional and the developer experience is poor. When I asked Couchbase about it, they basically said they don't care because real developers use SQL directly from code

Consumes too much RAM Couchbase is shipped with a smaller Memcached instance to handle the in-memory cache. Memcached ends up using 8 GB of RAM for 5000 documents! I'm not kidding! We had less than 5000 docs on a Couchbase instance and less than 20 indexes and RAM consumption was always over 8 GB

Memory allocations are useless I asked the Couchbase team a question: If a bucket has 1 GB allocated, what happens when I have more than 1GB stored? Does it overflow? Does it cache somewhere? Do I get an error? I always received the same answer: If you buy the Couchbase enterprise then we can guide you.

247k views247k
Comments
Gabriel
Gabriel

CEO at Naologic

Jan 2, 2020

DecidedonCouchDBCouchDBCouchbaseCouchbaseMemcachedMemcached

We implemented our first large scale EPR application from naologic.com using CouchDB .

Very fast, replication works great, doesn't consume much RAM, queries are blazing fast but we found a problem: the queries were very hard to write, it took a long time to figure out the API, we had to go and write our own @nodejs library to make it work properly.

It lost most of its support. Since then, we migrated to Couchbase and the learning curve was steep but all worth it. Memcached indexing out of the box, full text search works great.

592k views592k
Comments
Mike
Mike

Mar 20, 2020

Needs advice

We Have thousands of .pdf docs generated from the same form but with lots of variability. We need to extract data from open text and more important - from tables inside the docs. The output of Couchbase/Mongo will be one row per document for backend processing. ADOBE renders the tables in an unusable form.

241k views241k
Comments

Detailed Comparison

Amazon DynamoDB
Amazon DynamoDB
Couchbase
Couchbase

With it , you can offload the administrative burden of operating and scaling a highly available distributed database cluster, while paying a low price for only what you use.

Developed as an alternative to traditionally inflexible SQL databases, the Couchbase NoSQL database is built on an open source foundation and architected to help developers solve real-world problems and meet high scalability demands.

Automated Storage Scaling – There is no limit to the amount of data you can store in a DynamoDB table, and the service automatically allocates more storage, as you store more data using the DynamoDB write APIs;Provisioned Throughput – When creating a table, simply specify how much request capacity you require. DynamoDB allocates dedicated resources to your table to meet your performance requirements, and automatically partitions data over a sufficient number of servers to meet your request capacity;Fully Distributed, Shared Nothing Architecture
JSON document database; N1QL (SQL-like query language); Secondary Indexing; Full-Text Indexing; Eventing/Triggers; Real-Time Analytics; Mobile Synchronization for offline support; Autonomous Operator for Kubernetes and OpenShift
Statistics
Stacks
4.0K
Stacks
505
Followers
3.2K
Followers
606
Votes
195
Votes
110
Pros & Cons
Pros
  • 62
    Predictable performance and cost
  • 56
    Scalable
  • 35
    Native JSON Support
  • 21
    AWS Free Tier
  • 7
    Fast
Cons
  • 4
    Only sequential access for paginate data
  • 1
    Scaling
  • 1
    Document Limit Size
Pros
  • 18
    High performance
  • 18
    Flexible data model, easy scalability, extremely fast
  • 9
    Mobile app support
  • 7
    You can query it with Ansi-92 SQL
  • 6
    All nodes can be read/write
Cons
  • 3
    Terrible query language
Integrations
Amazon RDS for PostgreSQL
Amazon RDS for PostgreSQL
PostgreSQL
PostgreSQL
MySQL
MySQL
SQLite
SQLite
Azure Database for MySQL
Azure Database for MySQL
Hadoop
Hadoop
Kafka
Kafka
Elasticsearch
Elasticsearch
Kubernetes
Kubernetes
Apache Spark
Apache Spark

What are some alternatives to Amazon DynamoDB, Couchbase?

MongoDB

MongoDB

MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding.

MySQL

MySQL

The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software.

PostgreSQL

PostgreSQL

PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions.

Microsoft SQL Server

Microsoft SQL Server

Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

SQLite

SQLite

SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file.

Cassandra

Cassandra

Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.

Memcached

Memcached

Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering.

MariaDB

MariaDB

Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance.

RethinkDB

RethinkDB

RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn.

ArangoDB

ArangoDB

A distributed free and open-source database with a flexible data model for documents, graphs, and key-values. Build high performance applications using a convenient SQL-like query language or JavaScript extensions.

Related Comparisons

Bootstrap
Materialize

Bootstrap vs Materialize

Laravel
Django

Django vs Laravel vs Node.js

Bootstrap
Foundation

Bootstrap vs Foundation vs Material UI

Node.js
Spring Boot

Node.js vs Spring-Boot

Liquibase
Flyway

Flyway vs Liquibase