Amazon Athena vs Microsoft SQL Server

Need advice about which tool to choose?Ask the StackShare community!

Amazon Athena

505
840
+ 1
49
Microsoft SQL Server

20.2K
15.5K
+ 1
540
Add tool

Amazon Athena vs Microsoft SQL Server: What are the differences?

Introduction

In this article, we will compare and highlight the key differences between Amazon Athena and Microsoft SQL Server. Both Amazon Athena and Microsoft SQL Server are popular platforms used in data analytics and database management. While they serve similar purposes, they have distinct features that set them apart from each other.

  1. Scalability and Infrastructure Management:

    • Amazon Athena is a serverless data querying service provided by Amazon Web Services (AWS). It allows users to run queries on data stored in Amazon S3 without the need for provisioning and managing infrastructure. In contrast, Microsoft SQL Server requires the setup and management of servers, databases, and network infrastructure. Users need to allocate resources to handle their workloads and ensure scalability.
  2. Data Source and Integration:

    • Amazon Athena specializes in querying data stored in Amazon S3, making it ideal for analyzing large datasets from various sources like logs, CSV files, JSON objects, etc. It supports popular file formats like Parquet and ORC. On the other hand, Microsoft SQL Server can integrate with various databases and file systems, making it suitable for analyzing structured data from diverse sources.
  3. Cost Model:

    • Amazon Athena follows a pay-per-query pricing model. Users only pay for the amount of data scanned in each query, making it cost-effective for ad-hoc analysis. Microsoft SQL Server often involves licensing costs and requires more upfront investments, making it suitable for long-term or enterprise-level projects.
  4. Performance and Query Optimization:

    • Amazon Athena is optimized for running distributed queries on large datasets, leveraging the underlying power of AWS infrastructure. It automatically parallelizes and scales queries, offering faster results for ad-hoc analysis. Microsoft SQL Server, on the other hand, requires proper query optimization and indexing to achieve optimal performance. It provides tools and techniques to tune and optimize queries for specific workloads.
  5. SQL Dialect and Compatibility:

    • Amazon Athena uses a modified version of Presto SQL, which is ANSI SQL compliant but may have some syntax differences compared to traditional SQL dialects like T-SQL used in Microsoft SQL Server. This may require some adjustments in queries and can impact the portability of existing code or the ability to leverage specific SQL language features.
  6. Availability and Reliability:

    • Amazon Athena benefits from the robust infrastructure provided by AWS, ensuring high availability and fault tolerance. It is built to handle data failures and automatically recover from errors. Microsoft SQL Server's availability depends on the infrastructure setup and configuration. Users need to implement redundancy, clustering, and backups to ensure availability and reliability.

In Summary, Amazon Athena is a serverless query service optimized for ad-hoc analysis of large datasets stored in Amazon S3, providing scalable infrastructure and cost-effective pricing. Microsoft SQL Server, on the other hand, requires dedicated infrastructure management, supports various data sources, and offers more control over performance optimization and query tuning.

Advice on Amazon Athena and Microsoft SQL Server

Hi all,

Currently, we need to ingest the data from Amazon S3 to DB either Amazon Athena or Amazon Redshift. But the problem with the data is, it is in .PSV (pipe separated values) format and the size is also above 200 GB. The query performance of the timeout in Athena/Redshift is not up to the mark, too slow while compared to Google BigQuery. How would I optimize the performance and query result time? Can anyone please help me out?

See more
Replies (4)

you can use aws glue service to convert you pipe format data to parquet format , and thus you can achieve data compression . Now you should choose Redshift to copy your data as it is very huge. To manage your data, you should partition your data in S3 bucket and also divide your data across the redshift cluster

See more
Carlos Acedo
Data Technologies Manager at SDG Group Iberia · | 5 upvotes · 260.3K views
Recommends
on
Amazon RedshiftAmazon Redshift

First of all you should make your choice upon Redshift or Athena based on your use case since they are two very diferent services - Redshift is an enterprise-grade MPP Data Warehouse while Athena is a SQL layer on top of S3 with limited performance. If performance is a key factor, users are going to execute unpredictable queries and direct and managing costs are not a problem I'd definitely go for Redshift. If performance is not so critical and queries will be predictable somewhat I'd go for Athena.

Once you select the technology you'll need to optimize your data in order to get the queries executed as fast as possible. In both cases you may need to adapt the data model to fit your queries better. In the case you go for Athena you'd also proabably need to change your file format to Parquet or Avro and review your partition strategy depending on your most frequent type of query. If you choose Redshift you'll need to ingest the data from your files into it and maybe carry out some tuning tasks for performance gain.

I'll recommend Redshift for now since it can address a wider range of use cases, but we could give you better advice if you described your use case in depth.

See more
Alexis Blandin
Recommends
on
Amazon AthenaAmazon Athena

It depend of the nature of your data (structured or not?) and of course your queries (ad-hoc or predictible?). For example you can look at partitioning and columnar format to maximize MPP capabilities for both Athena and Redshift

See more
Recommends

you can change your PSV fomat data to parquet file format with AWS GLUE and then your query performance will be improved

See more

I am a Microsoft SQL Server programmer who is a bit out of practice. I have been asked to assist on a new project. The overall purpose is to organize a large number of recordings so that they can be searched. I have an enormous music library but my songs are several hours long. I need to include things like time, date and location of the recording. I don't have a problem with the general database design. I have two primary questions:

  1. I need to use either MySQL or PostgreSQL on a Linux based OS. Which would be better for this application?
  2. I have not dealt with a sound based data type before. How do I store that and put it in a table? Thank you.
See more
Replies (6)

Hi Erin,

Honestly both databases will do the job just fine. I personally prefer Postgres.

Much more important is how you store the audio. While you could technically use a blob type column, it's really not ideal to be storing audio files which are "several hours long" in a database row. Instead consider storing the audio files in an object store (hosted options include backblaze b2 or aws s3) and persisting the key (which references that object) in your database column.

See more
Aaron Westley
Recommends
on
PostgreSQLPostgreSQL

Hi Erin, Chances are you would want to store the files in a blob type. Both MySQL and Postgres support this. Can you explain a little more about your need to store the files in the database? I may be more effective to store the files on a file system or something like S3. To answer your qustion based on what you are descibing I would slighly lean towards PostgreSQL since it tends to be a little better on the data warehousing side.

See more
Christopher Wray
Web Developer at Soltech LLC · | 3 upvotes · 512.4K views
Recommends
on
DirectusDirectus
at

Hey Erin! I would recommend checking out Directus before you start work on building your own app for them. I just stumbled upon it, and so far extremely happy with the functionalities. If your client is just looking for a simple web app for their own data, then Directus may be a great option. It offers "database mirroring", so that you can connect it to any database and set up functionality around it!

See more
Julien DeFrance
Principal Software Engineer at Tophatter · | 3 upvotes · 512K views
Recommends
on
Amazon AuroraAmazon Aurora

Hi Erin! First of all, you'd probably want to go with a managed service. Don't spin up your own MySQL installation on your own Linux box. If you are on AWS, thet have different offerings for database services. Standard RDS vs. Aurora. Aurora would be my preferred choice given the benefits it offers, storage optimizations it comes with... etc. Such managed services easily allow you to apply new security patches and upgrades, set up backups, replication... etc. Doing this on your own would either be risky, inefficient, or you might just give up. As far as which database to chose, you'll have the choice between Postgresql, MySQL, Maria DB, SQL Server... etc. I personally would recommend MySQL (latest version available), as the official tooling for it (MySQL Workbench) is great, stable, and moreover free. Other database services exist, I'd recommend you also explore Dynamo DB.

Regardless, you'd certainly only keep high-level records, meta data in Database, and the actual files, most-likely in S3, so that you can keep all options open in terms of what you'll do with them.

See more
Recommends
on
PostgreSQLPostgreSQL

Hi Erin,

  • Coming from "Big" DB engines, such as Oracle or MSSQL, go for PostgreSQL. You'll get all the features you need with PostgreSQL.
  • Your case seems to point to a "NoSQL" or Document Database use case. Since you get covered on this with PostgreSQL which achieves excellent performances on JSON based objects, this is a second reason to choose PostgreSQL. MongoDB might be an excellent option as well if you need "sharding" and excellent map-reduce mechanisms for very massive data sets. You really should investigate the NoSQL option for your use case.
  • Starting with AWS Aurora is an excellent advise. since "vendor lock-in" is limited, but I did not check for JSON based object / NoSQL features.
  • If you stick to Linux server, the PostgreSQL or MySQL provided with your distribution are straightforward to install (i.e. apt install postgresql). For PostgreSQL, make sure you're comfortable with the pg_hba.conf, especially for IP restrictions & accesses.

Regards,

See more
Klaus Nji
Staff Software Engineer at SailPoint Technologies · | 1 upvotes · 512.1K views
Recommends
on
PostgreSQLPostgreSQL

I recommend Postgres as well. Superior performance overall and a more robust architecture.

See more
Manage your open source components, licenses, and vulnerabilities
Learn More
Pros of Amazon Athena
Pros of Microsoft SQL Server
  • 16
    Use SQL to analyze CSV files
  • 8
    Glue crawlers gives easy Data catalogue
  • 7
    Cheap
  • 6
    Query all my data without running servers 24x7
  • 4
    No data base servers yay
  • 3
    Easy integration with QuickSight
  • 2
    Query and analyse CSV,parquet,json files in sql
  • 2
    Also glue and athena use same data catalog
  • 1
    No configuration required
  • 0
    Ad hoc checks on data made easy
  • 139
    Reliable and easy to use
  • 101
    High performance
  • 95
    Great with .net
  • 65
    Works well with .net
  • 56
    Easy to maintain
  • 21
    Azure support
  • 17
    Always on
  • 17
    Full Index Support
  • 10
    Enterprise manager is fantastic
  • 9
    In-Memory OLTP Engine
  • 2
    Easy to setup and configure
  • 2
    Security is forefront
  • 1
    Great documentation
  • 1
    Faster Than Oracle
  • 1
    Columnstore indexes
  • 1
    Decent management tools
  • 1
    Docker Delivery
  • 1
    Max numar of connection is 14000

Sign up to add or upvote prosMake informed product decisions

Cons of Amazon Athena
Cons of Microsoft SQL Server
    Be the first to leave a con
    • 4
      Expensive Licensing
    • 2
      Microsoft
    • 1
      Data pages is only 8k
    • 1
      Allwayon can loose data in asycronious mode
    • 1
      Replication can loose the data
    • 1
      The maximum number of connections is only 14000 connect

    Sign up to add or upvote consMake informed product decisions

    What is Amazon Athena?

    Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using standard SQL. Athena is serverless, so there is no infrastructure to manage, and you pay only for the queries that you run.

    What is Microsoft SQL Server?

    Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions.

    Need advice about which tool to choose?Ask the StackShare community!

    What companies use Amazon Athena?
    What companies use Microsoft SQL Server?
    Manage your open source components, licenses, and vulnerabilities
    Learn More

    Sign up to get full access to all the companiesMake informed product decisions

    What tools integrate with Amazon Athena?
    What tools integrate with Microsoft SQL Server?

    Sign up to get full access to all the tool integrationsMake informed product decisions

    Blog Posts

    Aug 28 2019 at 3:10AM

    Segment

    PythonJavaAmazon S3+16
    7
    2774
    Jul 2 2019 at 9:34PM

    Segment

    Google AnalyticsAmazon S3New Relic+25
    10
    7026
    What are some alternatives to Amazon Athena and Microsoft SQL Server?
    Presto
    Distributed SQL Query Engine for Big Data
    Amazon Redshift Spectrum
    With Redshift Spectrum, you can extend the analytic power of Amazon Redshift beyond data stored on local disks in your data warehouse to query vast amounts of unstructured data in your Amazon S3 “data lake” -- without having to load or transform any data.
    Amazon Redshift
    It is optimized for data sets ranging from a few hundred gigabytes to a petabyte or more and costs less than $1,000 per terabyte per year, a tenth the cost of most traditional data warehousing solutions.
    Cassandra
    Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL.
    Spectrum
    The community platform for the future.
    See all alternatives