Alternatives to RocksDB logo

Alternatives to RocksDB

Redis, Cassandra, MongoDB, Badger, and HBase are the most popular alternatives and competitors to RocksDB.
139
290
+ 1
11

What is RocksDB and what are its top alternatives?

RocksDB is an embeddable persistent key-value store for fast storage. RocksDB can also be the foundation for a client-server database but our current focus is on embedded workloads. RocksDB builds on LevelDB to be scalable to run on servers with many CPU cores, to efficiently use fast storage, to support IO-bound, in-memory and write-once workloads, and to be flexible to allow for innovation.
RocksDB is a tool in the Databases category of a tech stack.
RocksDB is an open source tool with 27.9K GitHub stars and 6.2K GitHub forks. Here’s a link to RocksDB's open source repository on GitHub

Top Alternatives to RocksDB

  • Redis
    Redis

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...

  • Cassandra
    Cassandra

    Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • Badger
    Badger

    Domain management you'll enjoy. Domains effectively drive the entire internet, shouldn't they be easier to manage? We thought so, and thus, Badger was born! You shouldn't have to auction off your house and sacrifice your first born to transfer domains, you should be able to press a button that says "Transfer Domain" and be done with it. That is our philosophy, and we think you will appreciate it. Stop letting domain registrars badger you, and start using... Badger! ...

  • HBase
    HBase

    Apache HBase is an open-source, distributed, versioned, column-oriented store modeled after Google' Bigtable: A Distributed Storage System for Structured Data by Chang et al. Just as Bigtable leverages the distributed data storage provided by the Google File System, HBase provides Bigtable-like capabilities on top of Apache Hadoop. ...

  • Aerospike
    Aerospike

    Aerospike is an open-source, modern database built from the ground up to push the limits of flash storage, processors and networks. It was designed to operate with predictable low latency at high throughput with uncompromising reliability – both high availability and ACID guarantees. ...

  • Speedb
    Speedb

    Speedb’s Log-Structured Merge (LSM)-based key value store supports petabyte scaling of datasets with billions of objects, while maintaining high performance and low hardware requirements. It is based on a patented compaction method that reduces the write amplification factor (WAF) up to 6X and adds enhancements that eliminate latency issues and IO stalls. ...

  • Symas LMDB
    Symas LMDB

    It is an extraordinarily fast, memory-efficient database which is developed for the OpenLDAP Project. With memory-mapped files, it has the read performance of a pure in-memory database while retaining the persistence of standard disk-based databases. ...

RocksDB alternatives & related posts

Redis logo

Redis

58.8K
45.2K
3.9K
Open source (BSD licensed), in-memory data structure store
58.8K
45.2K
+ 1
3.9K
PROS OF REDIS
  • 886
    Performance
  • 542
    Super fast
  • 513
    Ease of use
  • 444
    In-memory cache
  • 324
    Advanced key-value cache
  • 194
    Open source
  • 182
    Easy to deploy
  • 164
    Stable
  • 155
    Free
  • 121
    Fast
  • 42
    High-Performance
  • 40
    High Availability
  • 35
    Data Structures
  • 32
    Very Scalable
  • 24
    Replication
  • 22
    Great community
  • 22
    Pub/Sub
  • 19
    "NoSQL" key-value data store
  • 16
    Hashes
  • 13
    Sets
  • 11
    Sorted Sets
  • 10
    NoSQL
  • 10
    Lists
  • 9
    Async replication
  • 9
    BSD licensed
  • 8
    Bitmaps
  • 8
    Integrates super easy with Sidekiq for Rails background
  • 7
    Keys with a limited time-to-live
  • 7
    Open Source
  • 6
    Lua scripting
  • 6
    Strings
  • 5
    Awesomeness for Free
  • 5
    Hyperloglogs
  • 4
    Transactions
  • 4
    Outstanding performance
  • 4
    Runs server side LUA
  • 4
    LRU eviction of keys
  • 4
    Feature Rich
  • 4
    Written in ANSI C
  • 4
    Networked
  • 3
    Data structure server
  • 3
    Performance & ease of use
  • 2
    Dont save data if no subscribers are found
  • 2
    Automatic failover
  • 2
    Easy to use
  • 2
    Temporarily kept on disk
  • 2
    Scalable
  • 2
    Existing Laravel Integration
  • 2
    Channels concept
  • 2
    Object [key/value] size each 500 MB
  • 2
    Simple
CONS OF REDIS
  • 15
    Cannot query objects directly
  • 3
    No secondary indexes for non-numeric data types
  • 1
    No WAL

related Redis posts

Russel Werner
Lead Engineer at StackShare · | 32 upvotes · 2.6M views

StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

#StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

See more
Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 10M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Cassandra logo

Cassandra

3.6K
3.5K
507
A partitioned row store. Rows are organized into tables with a required primary key.
3.6K
3.5K
+ 1
507
PROS OF CASSANDRA
  • 119
    Distributed
  • 98
    High performance
  • 81
    High availability
  • 74
    Easy scalability
  • 53
    Replication
  • 26
    Reliable
  • 26
    Multi datacenter deployments
  • 10
    Schema optional
  • 9
    OLTP
  • 8
    Open source
  • 2
    Workload separation (via MDC)
  • 1
    Fast
CONS OF CASSANDRA
  • 3
    Reliability of replication
  • 1
    Size
  • 1
    Updates

related Cassandra posts

Thierry Schellenbach
Shared insights
on
GolangGolangPythonPythonCassandraCassandra
at

After years of optimizing our existing feed technology, we decided to make a larger leap with 2.0 of Stream. While the first iteration of Stream was powered by Python and Cassandra, for Stream 2.0 of our infrastructure we switched to Go.

The main reason why we switched from Python to Go is performance. Certain features of Stream such as aggregation, ranking and serialization were very difficult to speed up using Python.

We’ve been using Go since March 2017 and it’s been a great experience so far. Go has greatly increased the productivity of our development team. Not only has it improved the speed at which we develop, it’s also 30x faster for many components of Stream. Initially we struggled a bit with package management for Go. However, using Dep together with the VG package contributed to creating a great workflow.

Go as a language is heavily focused on performance. The built-in PPROF tool is amazing for finding performance issues. Uber’s Go-Torch library is great for visualizing data from PPROF and will be bundled in PPROF in Go 1.10.

The performance of Go greatly influenced our architecture in a positive way. With Python we often found ourselves delegating logic to the database layer purely for performance reasons. The high performance of Go gave us more flexibility in terms of architecture. This led to a huge simplification of our infrastructure and a dramatic improvement of latency. For instance, we saw a 10 to 1 reduction in web-server count thanks to the lower memory and CPU usage for the same number of requests.

#DataStores #Databases

See more
Thierry Schellenbach
Shared insights
on
RedisRedisCassandraCassandraRocksDBRocksDB
at

1.0 of Stream leveraged Cassandra for storing the feed. Cassandra is a common choice for building feeds. Instagram, for instance started, out with Redis but eventually switched to Cassandra to handle their rapid usage growth. Cassandra can handle write heavy workloads very efficiently.

Cassandra is a great tool that allows you to scale write capacity simply by adding more nodes, though it is also very complex. This complexity made it hard to diagnose performance fluctuations. Even though we had years of experience with running Cassandra, it still felt like a bit of a black box. When building Stream 2.0 we decided to go for a different approach and build Keevo. Keevo is our in-house key-value store built upon RocksDB, gRPC and Raft.

RocksDB is a highly performant embeddable database library developed and maintained by Facebook’s data engineering team. RocksDB started as a fork of Google’s LevelDB that introduced several performance improvements for SSD. Nowadays RocksDB is a project on its own and is under active development. It is written in C++ and it’s fast. Have a look at how this benchmark handles 7 million QPS. In terms of technology it’s much more simple than Cassandra.

This translates into reduced maintenance overhead, improved performance and, most importantly, more consistent performance. It’s interesting to note that LinkedIn also uses RocksDB for their feed.

#InMemoryDatabases #DataStores #Databases

See more
MongoDB logo

MongoDB

92.5K
79.9K
4.1K
The database for giant ideas
92.5K
79.9K
+ 1
4.1K
PROS OF MONGODB
  • 827
    Document-oriented storage
  • 593
    No sql
  • 553
    Ease of use
  • 464
    Fast
  • 410
    High performance
  • 257
    Free
  • 218
    Open source
  • 180
    Flexible
  • 145
    Replication & high availability
  • 112
    Easy to maintain
  • 42
    Querying
  • 39
    Easy scalability
  • 38
    Auto-sharding
  • 37
    High availability
  • 31
    Map/reduce
  • 27
    Document database
  • 25
    Easy setup
  • 25
    Full index support
  • 16
    Reliable
  • 15
    Fast in-place updates
  • 14
    Agile programming, flexible, fast
  • 12
    No database migrations
  • 8
    Easy integration with Node.Js
  • 8
    Enterprise
  • 6
    Enterprise Support
  • 5
    Great NoSQL DB
  • 4
    Support for many languages through different drivers
  • 3
    Schemaless
  • 3
    Aggregation Framework
  • 3
    Drivers support is good
  • 2
    Fast
  • 2
    Managed service
  • 2
    Easy to Scale
  • 2
    Awesome
  • 2
    Consistent
  • 1
    Good GUI
  • 1
    Acid Compliant
CONS OF MONGODB
  • 6
    Very slowly for connected models that require joins
  • 3
    Not acid compliant
  • 2
    Proprietary query language

related MongoDB posts

Shared insights
on
Node.jsNode.jsGraphQLGraphQLMongoDBMongoDB

I just finished the very first version of my new hobby project: #MovieGeeks. It is a minimalist online movie catalog for you to save the movies you want to see and for rating the movies you already saw. This is just the beginning as I am planning to add more features on the lines of sharing and discovery

For the #BackEnd I decided to use Node.js , GraphQL and MongoDB:

  1. Node.js has a huge community so it will always be a safe choice in terms of libraries and finding solutions to problems you may have

  2. GraphQL because I needed to improve my skills with it and because I was never comfortable with the usual REST approach. I believe GraphQL is a better option as it feels more natural to write apis, it improves the development velocity, by definition it fixes the over-fetching and under-fetching problem that is so common on REST apis, and on top of that, the community is getting bigger and bigger.

  3. MongoDB was my choice for the database as I already have a lot of experience working on it and because, despite of some bad reputation it has acquired in the last months, I still believe it is a powerful database for at least a very long list of use cases such as the one I needed for my website

See more
Vaibhav Taunk
Team Lead at Technovert · | 31 upvotes · 4M views

I am starting to become a full-stack developer, by choosing and learning .NET Core for API Development, Angular CLI / React for UI Development, MongoDB for database, as it a NoSQL DB and Flutter / React Native for Mobile App Development. Using Postman, Markdown and Visual Studio Code for development.

See more
Badger logo

Badger

12
28
0
A new way of registering and managing your domains.
12
28
+ 1
0
PROS OF BADGER
    Be the first to leave a pro
    CONS OF BADGER
      Be the first to leave a con

      related Badger posts

      HBase logo

      HBase

      459
      494
      15
      The Hadoop database, a distributed, scalable, big data store
      459
      494
      + 1
      15
      PROS OF HBASE
      • 9
        Performance
      • 5
        OLTP
      • 1
        Fast Point Queries
      CONS OF HBASE
        Be the first to leave a con

        related HBase posts

        I am researching different querying solutions to handle ~1 trillion records of data (in the realm of a petabyte). The data is mostly textual. I have identified a few options: Milvus, HBase, RocksDB, and Elasticsearch. I was wondering if there is a good way to compare the performance of these options (or if anyone has already done something like this). I want to be able to compare the speed of ingesting and querying textual data from these tools. Does anyone have information on this or know where I can find some? Thanks in advance!

        See more

        Hi, I'm building a machine learning pipelines to store image bytes and image vectors in the backend.

        So, when users query for the random access image data (key), we return the image bytes and perform machine learning model operations on it.

        I'm currently considering going with Amazon S3 (in the future, maybe add Redis caching layer) as the backend system to store the information (s3 buckets with sharded prefixes).

        As the latency of S3 is 100-200ms (get/put) and it has a high throughput of 3500 puts/sec and 5500 gets/sec for a given bucker/prefix. In the future I need to reduce the latency, I can add Redis cache.

        Also, s3 costs are way fewer than HBase (on Amazon EC2 instances with 3x replication factor)

        I have not personally used HBase before, so can someone help me if I'm making the right choice here? I'm not aware of Hbase latencies and I have learned that the MOB feature on Hbase has to be turned on if we have store image bytes on of the column families as the avg image bytes are 240Kb.

        See more
        Aerospike logo

        Aerospike

        200
        285
        48
        Flash-optimized in-memory open source NoSQL database
        200
        285
        + 1
        48
        PROS OF AEROSPIKE
        • 16
          Ram and/or ssd persistence
        • 12
          Easy clustering support
        • 5
          Easy setup
        • 4
          Acid
        • 3
          Petabyte Scale
        • 3
          Scale
        • 3
          Performance better than Redis
        • 2
          Ease of use
        CONS OF AEROSPIKE
          Be the first to leave a con

          related Aerospike posts

          Gagan Jakhotiya
          Engineering Manager at BigBasket · | 5 upvotes · 59.9K views
          Shared insights
          on
          Tile38Tile38MySQLMySQLAerospikeAerospike

          I have a very limited but significant use case for spatial index in a routing service. I see these indexes not growing beyond 10,000 geometries for the next 1 year and maybe 100,000 for the next 3 years. The solution needs to be approached from a delivery timeline perspective mostly because the use case also comes with a slightly relaxed compute time SLA and cost optimum implementation PoV.

          We have chosen R-Tree based index as a suitable choice for our use case. We are already using Aerospike and MySQL in our stack. MySQL supports R-Tree and has good docs as well. I couldn't find anything specific to R-Tree with Aerospike. Also, generally would like to understand from the performance perspective how these two choices would fare with something like Tile38?

          Suggestions beside these are also most welcome.

          See more
          Speedb logo

          Speedb

          7
          9
          0
          An embeddable, high performance key-value store
          7
          9
          + 1
          0
          PROS OF SPEEDB
            Be the first to leave a pro
            CONS OF SPEEDB
              Be the first to leave a con

              related Speedb posts

              Symas LMDB logo

              Symas LMDB

              17
              36
              0
              A memory-efficient database
              17
              36
              + 1
              0
              PROS OF SYMAS LMDB
                Be the first to leave a pro
                CONS OF SYMAS LMDB
                  Be the first to leave a con

                  related Symas LMDB posts