What is Redash and what are its top alternatives?
Top Alternatives to Redash
- Tableau
Tableau can help anyone see and understand their data. Connect to almost any database, drag and drop to create visualizations, and share with a click. ...
- Periscope
Periscope is a data analysis tool that uses pre-emptive in-memory caching and statistical sampling to run data analyses really, really fast. ...
- Looker
We've built a unique data modeling language, connections to today's fastest analytical databases, and a service that you can deploy on any infrastructure, and explore on any device. Plus, we'll help you every step of the way. ...
- Metabase
It is an easy way to generate charts and dashboards, ask simple ad hoc queries without using SQL, and see detailed information about rows in your Database. You can set it up in under 5 minutes, and then give yourself and others a place to ask simple questions and understand the data your application is generating. ...
- Mode
Created by analysts, for analysts, Mode is a SQL-based analytics tool that connects directly to your database. Mode is designed to alleviate the bottlenecks in today's analytical workflow and drive collaboration around data projects. ...
- Grafana
Grafana is a general purpose dashboard and graph composer. It's focused on providing rich ways to visualize time series metrics, mainly though graphs but supports other ways to visualize data through a pluggable panel architecture. It currently has rich support for for Graphite, InfluxDB and OpenTSDB. But supports other data sources via plugins. ...
- Superset
Superset's main goal is to make it easy to slice, dice and visualize data. It empowers users to perform analytics at the speed of thought. ...
- Kibana
Kibana is an open source (Apache Licensed), browser based analytics and search dashboard for Elasticsearch. Kibana is a snap to setup and start using. Kibana strives to be easy to get started with, while also being flexible and powerful, just like Elasticsearch. ...
Redash alternatives & related posts
- Capable of visualising billions of rows6
- Intuitive and easy to learn1
- Responsive1
- Very expensive for small companies3
related Tableau posts
Looking for the best analytics software for a medium-large-sized firm. We currently use a Microsoft SQL Server database that is analyzed in Tableau desktop/published to Tableau online for users to access dashboards. Is it worth the cost savings/time to switch over to using SSRS or Power BI? Does anyone have experience migrating from Tableau to SSRS /or Power BI? Our other option is to consider using Tableau on-premises instead of online. Using custom SQL with over 3 million rows really decreases performances and results in processing times that greatly exceed our typical experience. Thanks.
Hello everyone,
My team and I are currently in the process of selecting a Business Intelligence (BI) tool for our actively developing company, which has over 500 employees. We are considering open-source options.
We are keen to connect with a Head of Analytics or BI Analytics professional who has extensive experience working with any of these systems and is willing to share their insights. Ideally, we would like to speak with someone from companies that have transitioned from proprietary BI tools (such as PowerBI, Qlik, or Tableau) to open-source BI tools, or vice versa.
If you have any contacts or recommendations for individuals we could reach out to regarding this matter, we would greatly appreciate it. Additionally, if you are personally willing to share your experiences, please feel free to reach out to me directly. Thank you!
Periscope
- Great for learning and teaching people SQL6
- Gorgeous "share-able" and "embeddable" dashboards4
related Periscope posts
- Real time in app customer chat support4
- GitHub integration4
- Reduces the barrier of entry to utilizing data1
- Price3
related Looker posts
Looker , Stitch , Amazon Redshift , dbt
We recently moved our Data Analytics and Business Intelligence tooling to Looker . It's already helping us create a solid process for reusable SQL-based data modeling, with consistent definitions across the entire organizations. Looker allows us to collaboratively build these version-controlled models and push the limits of what we've traditionally been able to accomplish with analytics with a lean team.
For Data Engineering, we're in the process of moving from maintaining our own ETL pipelines on AWS to a managed ELT system on Stitch. We're also evaluating the command line tool, dbt to manage data transformations. Our hope is that Stitch + dbt will streamline the ELT bit, allowing us to focus our energies on analyzing data, rather than managing it.
Our primary source of monitoring and alerting is Datadog. We’ve got prebuilt dashboards for every scenario and integration with PagerDuty to manage routing any alerts. We’ve definitely scaled past the point where managing dashboards is easy, but we haven’t had time to invest in using features like Anomaly Detection. We’ve started using Honeycomb for some targeted debugging of complex production issues and we are liking what we’ve seen. We capture any unhandled exceptions with Rollbar and, if we realize one will keep happening, we quickly convert the metrics to point back to Datadog, to keep Rollbar as clean as possible.
We use Segment to consolidate all of our trackers, the most important of which goes to Amplitude to analyze user patterns. However, if we need a more consolidated view, we push all of our data to our own data warehouse running PostgreSQL; this is available for analytics and dashboard creation through Looker.
- Database visualisation62
- Open Source45
- Easy setup41
- Dashboard out of the box36
- Free23
- Simple14
- Support for many dbs9
- Easy embedding7
- Easy6
- It's good6
- AGPL : wont help with adoption but depends on your goal5
- BI doesn't get easier than that5
- Google analytics integration4
- Multiple integrations4
- Easy set up4
- Harder to setup than similar tools7
related Metabase posts
Need to create a dashboard with a variety of charts having a good drill-down feature with good UI/UX and easy to manage users and roles with some authentication. I am confused between Superset and Metabase, so please suggest.
Mode
- Empowering for SQL-first analysts4
- Easy report building3
- Collaborative query building3
- In-app customer chat support2
- Awesome online and chat support2
- Integrated IDE with SQL + Python for analysis2
- Auto SQL query to Python dataframe1
related Mode posts
- Beautiful89
- Graphs are interactive68
- Free57
- Easy56
- Nicer than the Graphite web interface34
- Many integrations26
- Can build dashboards18
- Easy to specify time window10
- Can collaborate on dashboards10
- Dashboards contain number tiles9
- Open Source5
- Integration with InfluxDB5
- Click and drag to zoom in5
- Authentification and users management4
- Threshold limits in graphs4
- Alerts3
- It is open to cloud watch and many database3
- Simple and native support to Prometheus3
- Great community support2
- You can use this for development to check memcache2
- You can visualize real time data to put alerts2
- Grapsh as code0
- Plugin visualizationa0
- No interactive query builder1
related Grafana posts
Grafana and Prometheus together, running on Kubernetes , is a powerful combination. These tools are cloud-native and offer a large community and easy integrations. At PayIt we're using exporting Java application metrics using a Dropwizard metrics exporter, and our Node.js services now use the prom-client npm library to serve metrics.
Why we spent several years building an open source, large-scale metrics alerting system, M3, built for Prometheus:
By late 2014, all services, infrastructure, and servers at Uber emitted metrics to a Graphite stack that stored them using the Whisper file format in a sharded Carbon cluster. We used Grafana for dashboarding and Nagios for alerting, issuing Graphite threshold checks via source-controlled scripts. While this worked for a while, expanding the Carbon cluster required a manual resharding process and, due to lack of replication, any single node’s disk failure caused permanent loss of its associated metrics. In short, this solution was not able to meet our needs as the company continued to grow.
To ensure the scalability of Uber’s metrics backend, we decided to build out a system that provided fault tolerant metrics ingestion, storage, and querying as a managed platform...
(GitHub : https://github.com/m3db/m3)
- Awesome interactive filtering13
- Free9
- Wide SQL database support6
- Shareable & editable dashboards6
- Great for data collaborating on data exploration5
- User & Role Management3
- Easy to share charts & dasboards3
- Link diff db together "Data Modeling "4
- It is difficult to install on the server3
- Ugly GUI3
related Superset posts
Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.
I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.
For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.
Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.
Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.
Future improvements / technology decisions included:
Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic
As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.
One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.
Need to create a dashboard with a variety of charts having a good drill-down feature with good UI/UX and easy to manage users and roles with some authentication. I am confused between Superset and Metabase, so please suggest.
- Easy to setup88
- Free65
- Can search text45
- Has pie chart21
- X-axis is not restricted to timestamp13
- Easy queries and is a good way to view logs9
- Supports Plugins6
- Dev Tools4
- More "user-friendly"3
- Can build dashboards3
- Out-of-Box Dashboards/Analytics for Metrics/Heartbeat2
- Easy to drill-down2
- Up and running1
- Unintuituve6
- Elasticsearch is huge4
- Hardweight UI3
- Works on top of elastic only3
related Kibana posts
Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).
It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up
or vagrant reload
we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.
I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up
, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.
We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.
If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.
The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).
Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.
This is my stack in Application & Data
JavaScript PHP HTML5 jQuery Redis Amazon EC2 Ubuntu Sass Vue.js Firebase Laravel Lumen Amazon RDS GraphQL MariaDB
My Utilities Tools
Google Analytics Postman Elasticsearch
My Devops Tools
Git GitHub GitLab npm Visual Studio Code Kibana Sentry BrowserStack
My Business Tools
Slack