Alternatives to LXC logo

Alternatives to LXC

Docker, LXD, KVM, OpenVZ, and Kubernetes are the most popular alternatives and competitors to LXC.
118
225
+ 1
19

What is LXC and what are its top alternatives?

LXC is a userspace interface for the Linux kernel containment features. Through a powerful API and simple tools, it lets Linux users easily create and manage system or application containers.
LXC is a tool in the Virtual Machine Platforms & Containers category of a tech stack.
LXC is an open source tool with 4.4K GitHub stars and 1.1K GitHub forks. Here’s a link to LXC's open source repository on GitHub

Top Alternatives to LXC

  • Docker
    Docker

    The Docker Platform is the industry-leading container platform for continuous, high-velocity innovation, enabling organizations to seamlessly build and share any application — from legacy to what comes next — and securely run them anywhere ...

  • LXD
    LXD

    LXD isn't a rewrite of LXC, in fact it's building on top of LXC to provide a new, better user experience. Under the hood, LXD uses LXC through liblxc and its Go binding to create and manage the containers. It's basically an alternative to LXC's tools and distribution template system with the added features that come from being controllable over the network. ...

  • KVM
    KVM

    KVM (for Kernel-based Virtual Machine) is a full virtualization solution for Linux on x86 hardware containing virtualization extensions (Intel VT or AMD-V). ...

  • OpenVZ
    OpenVZ

    Virtuozzo leverages OpenVZ as its core of a virtualization solution offered by Virtuozzo company. Virtuozzo is optimized for hosters and offers hypervisor (VMs in addition to containers), distributed cloud storage, dedicated support, management tools, and easy installation. ...

  • Kubernetes
    Kubernetes

    Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...

  • Studio 3T
    Studio 3T

    It's the only MongoDB tool that provides three ways to explore data alongside powerful features like query autocompletion, polyglot code generation, a stage-by-stage aggregation query builder, import and export, SQL query support and more. ...

  • Vagrant Cloud
    Vagrant Cloud

    Vagrant Cloud pairs with Vagrant to enable access, insight and collaboration across teams, as well as to bring exposure to community contributions and development environments. ...

  • rkt
    rkt

    Rocket is a cli for running App Containers. The goal of rocket is to be composable, secure, and fast. ...

LXC alternatives & related posts

Docker logo

Docker

184.9K
136.1K
3.9K
Enterprise Container Platform for High-Velocity Innovation.
184.9K
136.1K
+ 1
3.9K
PROS OF DOCKER
  • 823
    Rapid integration and build up
  • 691
    Isolation
  • 521
    Open source
  • 505
    Testa­bil­i­ty and re­pro­ducibil­i­ty
  • 460
    Lightweight
  • 218
    Standardization
  • 185
    Scalable
  • 106
    Upgrading / down­grad­ing / ap­pli­ca­tion versions
  • 88
    Security
  • 85
    Private paas environments
  • 34
    Portability
  • 26
    Limit resource usage
  • 17
    Game changer
  • 16
    I love the way docker has changed virtualization
  • 14
    Fast
  • 12
    Concurrency
  • 8
    Docker's Compose tools
  • 6
    Easy setup
  • 6
    Fast and Portable
  • 5
    Because its fun
  • 4
    Makes shipping to production very simple
  • 3
    Highly useful
  • 3
    It's dope
  • 2
    Very easy to setup integrate and build
  • 2
    HIgh Throughput
  • 2
    Package the environment with the application
  • 2
    Does a nice job hogging memory
  • 2
    Open source and highly configurable
  • 2
    Simplicity, isolation, resource effective
  • 2
    MacOS support FAKE
  • 2
    Its cool
  • 2
    Docker hub for the FTW
  • 2
    Super
  • 0
    Asdfd
CONS OF DOCKER
  • 8
    New versions == broken features
  • 6
    Unreliable networking
  • 6
    Documentation not always in sync
  • 4
    Moves quickly
  • 3
    Not Secure

related Docker posts

Simon Reymann
Senior Fullstack Developer at QUANTUSflow Software GmbH · | 30 upvotes · 8.9M views

Our whole DevOps stack consists of the following tools:

  • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
  • Respectively Git as revision control system
  • SourceTree as Git GUI
  • Visual Studio Code as IDE
  • CircleCI for continuous integration (automatize development process)
  • Prettier / TSLint / ESLint as code linter
  • SonarQube as quality gate
  • Docker as container management (incl. Docker Compose for multi-container application management)
  • VirtualBox for operating system simulation tests
  • Kubernetes as cluster management for docker containers
  • Heroku for deploying in test environments
  • nginx as web server (preferably used as facade server in production environment)
  • SSLMate (using OpenSSL) for certificate management
  • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
  • PostgreSQL as preferred database system
  • Redis as preferred in-memory database/store (great for caching)

The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

  • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
  • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
  • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
  • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
  • Scalability: All-in-one framework for distributed systems.
  • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
See more
Tymoteusz Paul
Devops guy at X20X Development LTD · | 23 upvotes · 8M views

Often enough I have to explain my way of going about setting up a CI/CD pipeline with multiple deployment platforms. Since I am a bit tired of yapping the same every single time, I've decided to write it up and share with the world this way, and send people to read it instead ;). I will explain it on "live-example" of how the Rome got built, basing that current methodology exists only of readme.md and wishes of good luck (as it usually is ;)).

It always starts with an app, whatever it may be and reading the readmes available while Vagrant and VirtualBox is installing and updating. Following that is the first hurdle to go over - convert all the instruction/scripts into Ansible playbook(s), and only stopping when doing a clear vagrant up or vagrant reload we will have a fully working environment. As our Vagrant environment is now functional, it's time to break it! This is the moment to look for how things can be done better (too rigid/too lose versioning? Sloppy environment setup?) and replace them with the right way to do stuff, one that won't bite us in the backside. This is the point, and the best opportunity, to upcycle the existing way of doing dev environment to produce a proper, production-grade product.

I should probably digress here for a moment and explain why. I firmly believe that the way you deploy production is the same way you should deploy develop, shy of few debugging-friendly setting. This way you avoid the discrepancy between how production work vs how development works, which almost always causes major pains in the back of the neck, and with use of proper tools should mean no more work for the developers. That's why we start with Vagrant as developer boxes should be as easy as vagrant up, but the meat of our product lies in Ansible which will do meat of the work and can be applied to almost anything: AWS, bare metal, docker, LXC, in open net, behind vpn - you name it.

We must also give proper consideration to monitoring and logging hoovering at this point. My generic answer here is to grab Elasticsearch, Kibana, and Logstash. While for different use cases there may be better solutions, this one is well battle-tested, performs reasonably and is very easy to scale both vertically (within some limits) and horizontally. Logstash rules are easy to write and are well supported in maintenance through Ansible, which as I've mentioned earlier, are at the very core of things, and creating triggers/reports and alerts based on Elastic and Kibana is generally a breeze, including some quite complex aggregations.

If we are happy with the state of the Ansible it's time to move on and put all those roles and playbooks to work. Namely, we need something to manage our CI/CD pipelines. For me, the choice is obvious: TeamCity. It's modern, robust and unlike most of the light-weight alternatives, it's transparent. What I mean by that is that it doesn't tell you how to do things, doesn't limit your ways to deploy, or test, or package for that matter. Instead, it provides a developer-friendly and rich playground for your pipelines. You can do most the same with Jenkins, but it has a quite dated look and feel to it, while also missing some key functionality that must be brought in via plugins (like quality REST API which comes built-in with TeamCity). It also comes with all the common-handy plugins like Slack or Apache Maven integration.

The exact flow between CI and CD varies too greatly from one application to another to describe, so I will outline a few rules that guide me in it: 1. Make build steps as small as possible. This way when something breaks, we know exactly where, without needing to dig and root around. 2. All security credentials besides development environment must be sources from individual Vault instances. Keys to those containers should exist only on the CI/CD box and accessible by a few people (the less the better). This is pretty self-explanatory, as anything besides dev may contain sensitive data and, at times, be public-facing. Because of that appropriate security must be present. TeamCity shines in this department with excellent secrets-management. 3. Every part of the build chain shall consume and produce artifacts. If it creates nothing, it likely shouldn't be its own build. This way if any issue shows up with any environment or version, all developer has to do it is grab appropriate artifacts to reproduce the issue locally. 4. Deployment builds should be directly tied to specific Git branches/tags. This enables much easier tracking of what caused an issue, including automated identifying and tagging the author (nothing like automated regression testing!).

Speaking of deployments, I generally try to keep it simple but also with a close eye on the wallet. Because of that, I am more than happy with AWS or another cloud provider, but also constantly peeking at the loads and do we get the value of what we are paying for. Often enough the pattern of use is not constantly erratic, but rather has a firm baseline which could be migrated away from the cloud and into bare metal boxes. That is another part where this approach strongly triumphs over the common Docker and CircleCI setup, where you are very much tied in to use cloud providers and getting out is expensive. Here to embrace bare-metal hosting all you need is a help of some container-based self-hosting software, my personal preference is with Proxmox and LXC. Following that all you must write are ansible scripts to manage hardware of Proxmox, similar way as you do for Amazon EC2 (ansible supports both greatly) and you are good to go. One does not exclude another, quite the opposite, as they can live in great synergy and cut your costs dramatically (the heavier your base load, the bigger the savings) while providing production-grade resiliency.

See more
LXD logo

LXD

105
194
68
Daemon based on liblxc offering a REST API to manage containers
105
194
+ 1
68
PROS OF LXD
  • 10
    More simple
  • 8
    Open Source
  • 8
    API
  • 8
    Best
  • 7
    Cluster
  • 5
    Multiprocess isolation (not single)
  • 5
    Fast
  • 5
    I like the goal of the LXD and found it to work great
  • 4
    Full OS isolation
  • 3
    Container
  • 3
    More stateful than docker
  • 2
    Systemctl compatibility
CONS OF LXD
    Be the first to leave a con

    related LXD posts

    KVM logo

    KVM

    176
    226
    8
    Kernel-based Virtual Machine is a full virtualization solution for Linux
    176
    226
    + 1
    8
    PROS OF KVM
    • 4
      No license issues
    • 2
      Very fast
    • 2
      Flexible network options
    CONS OF KVM
      Be the first to leave a con

      related KVM posts

      OpenVZ logo

      OpenVZ

      12
      35
      0
      Open source container-based virtualization for Linux
      12
      35
      + 1
      0
      PROS OF OPENVZ
        Be the first to leave a pro
        CONS OF OPENVZ
          Be the first to leave a con

          related OpenVZ posts

          Kubernetes logo

          Kubernetes

          58.7K
          50.4K
          677
          Manage a cluster of Linux containers as a single system to accelerate Dev and simplify Ops
          58.7K
          50.4K
          + 1
          677
          PROS OF KUBERNETES
          • 164
            Leading docker container management solution
          • 128
            Simple and powerful
          • 106
            Open source
          • 76
            Backed by google
          • 58
            The right abstractions
          • 25
            Scale services
          • 20
            Replication controller
          • 11
            Permission managment
          • 9
            Supports autoscaling
          • 8
            Cheap
          • 8
            Simple
          • 6
            Self-healing
          • 5
            No cloud platform lock-in
          • 5
            Promotes modern/good infrascture practice
          • 5
            Open, powerful, stable
          • 5
            Reliable
          • 4
            Scalable
          • 4
            Quick cloud setup
          • 3
            Cloud Agnostic
          • 3
            Captain of Container Ship
          • 3
            A self healing environment with rich metadata
          • 3
            Runs on azure
          • 3
            Backed by Red Hat
          • 3
            Custom and extensibility
          • 2
            Sfg
          • 2
            Gke
          • 2
            Everything of CaaS
          • 2
            Golang
          • 2
            Easy setup
          • 2
            Expandable
          CONS OF KUBERNETES
          • 16
            Steep learning curve
          • 15
            Poor workflow for development
          • 8
            Orchestrates only infrastructure
          • 4
            High resource requirements for on-prem clusters
          • 2
            Too heavy for simple systems
          • 1
            Additional vendor lock-in (Docker)
          • 1
            More moving parts to secure
          • 1
            Additional Technology Overhead

          related Kubernetes posts

          Conor Myhrvold
          Tech Brand Mgr, Office of CTO at Uber · | 44 upvotes · 9.5M views

          How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:

          Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.

          Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:

          https://eng.uber.com/distributed-tracing/

          (GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)

          Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark

          See more
          Yshay Yaacobi

          Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.

          Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.

          After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...

          See more
          Studio 3T logo

          Studio 3T

          64
          150
          0
          The professional GUI and IDE for MongoDB
          64
          150
          + 1
          0
          PROS OF STUDIO 3T
            Be the first to leave a pro
            CONS OF STUDIO 3T
              Be the first to leave a con

              related Studio 3T posts

              Vagrant Cloud logo

              Vagrant Cloud

              32
              46
              2
              Share, discover, and create Vagrant environments
              32
              46
              + 1
              2
              PROS OF VAGRANT CLOUD
              • 2
                Well Known
              CONS OF VAGRANT CLOUD
                Be the first to leave a con

                related Vagrant Cloud posts

                rkt logo

                rkt

                29
                112
                10
                App Container runtime
                29
                112
                + 1
                10
                PROS OF RKT
                • 5
                  Security
                • 3
                  Robust container portability
                • 2
                  Composable containers
                CONS OF RKT
                  Be the first to leave a con

                  related rkt posts