What is Looker and what are its top alternatives?
Top Alternatives to Looker
- Tableau
Tableau can help anyone see and understand their data. Connect to almost any database, drag and drop to create visualizations, and share with a click. ...
- Superset
Superset's main goal is to make it easy to slice, dice and visualize data. It empowers users to perform analytics at the speed of thought. ...
- Periscope
Periscope is a data analysis tool that uses pre-emptive in-memory caching and statistical sampling to run data analyses really, really fast. ...
- Chartio
Chartio is a cloud-based business analytics solution on a mission to enable everyone within an organization to access, explore, transform and visualize their data. ...
- Mode
Created by analysts, for analysts, Mode is a SQL-based analytics tool that connects directly to your database. Mode is designed to alleviate the bottlenecks in today's analytical workflow and drive collaboration around data projects. ...
- DOMO
Domo: business intelligence, data visualization, dashboards and reporting all together. Simplify your big data and improve your business with Domo's agile and mobile-ready platform. ...
- Power BI
It aims to provide interactive visualizations and business intelligence capabilities with an interface simple enough for end users to create their own reports and dashboards. ...
- Sisense
It is making business intelligence (BI) analytics easy with its simple drag-and-drop and scalable end-to-end BI processes that help to prepare, analyze, and visualize multiple complex datasets quickly. ...
Looker alternatives & related posts
- Capable of visualising billions of rows6
- Intuitive and easy to learn1
- Responsive1
- Very expensive for small companies3
related Tableau posts
Looking for the best analytics software for a medium-large-sized firm. We currently use a Microsoft SQL Server database that is analyzed in Tableau desktop/published to Tableau online for users to access dashboards. Is it worth the cost savings/time to switch over to using SSRS or Power BI? Does anyone have experience migrating from Tableau to SSRS /or Power BI? Our other option is to consider using Tableau on-premises instead of online. Using custom SQL with over 3 million rows really decreases performances and results in processing times that greatly exceed our typical experience. Thanks.
Hello everyone,
My team and I are currently in the process of selecting a Business Intelligence (BI) tool for our actively developing company, which has over 500 employees. We are considering open-source options.
We are keen to connect with a Head of Analytics or BI Analytics professional who has extensive experience working with any of these systems and is willing to share their insights. Ideally, we would like to speak with someone from companies that have transitioned from proprietary BI tools (such as PowerBI, Qlik, or Tableau) to open-source BI tools, or vice versa.
If you have any contacts or recommendations for individuals we could reach out to regarding this matter, we would greatly appreciate it. Additionally, if you are personally willing to share your experiences, please feel free to reach out to me directly. Thank you!
- Awesome interactive filtering13
- Free9
- Wide SQL database support6
- Shareable & editable dashboards6
- Great for data collaborating on data exploration5
- User & Role Management3
- Easy to share charts & dasboards3
- Link diff db together "Data Modeling "4
- It is difficult to install on the server3
- Ugly GUI3
related Superset posts
Back in 2014, I was given an opportunity to re-architect SmartZip Analytics platform, and flagship product: SmartTargeting. This is a SaaS software helping real estate professionals keeping up with their prospects and leads in a given neighborhood/territory, finding out (thanks to predictive analytics) who's the most likely to list/sell their home, and running cross-channel marketing automation against them: direct mail, online ads, email... The company also does provide Data APIs to Enterprise customers.
I had inherited years and years of technical debt and I knew things had to change radically. The first enabler to this was to make use of the cloud and go with AWS, so we would stop re-inventing the wheel, and build around managed/scalable services.
For the SaaS product, we kept on working with Rails as this was what my team had the most knowledge in. We've however broken up the monolith and decoupled the front-end application from the backend thanks to the use of Rails API so we'd get independently scalable micro-services from now on.
Our various applications could now be deployed using AWS Elastic Beanstalk so we wouldn't waste any more efforts writing time-consuming Capistrano deployment scripts for instance. Combined with Docker so our application would run within its own container, independently from the underlying host configuration.
Storage-wise, we went with Amazon S3 and ditched any pre-existing local or network storage people used to deal with in our legacy systems. On the database side: Amazon RDS / MySQL initially. Ultimately migrated to Amazon RDS for Aurora / MySQL when it got released. Once again, here you need a managed service your cloud provider handles for you.
Future improvements / technology decisions included:
Caching: Amazon ElastiCache / Memcached CDN: Amazon CloudFront Systems Integration: Segment / Zapier Data-warehousing: Amazon Redshift BI: Amazon Quicksight / Superset Search: Elasticsearch / Amazon Elasticsearch Service / Algolia Monitoring: New Relic
As our usage grows, patterns changed, and/or our business needs evolved, my role as Engineering Manager then Director of Engineering was also to ensure my team kept on learning and innovating, while delivering on business value.
One of these innovations was to get ourselves into Serverless : Adopting AWS Lambda was a big step forward. At the time, only available for Node.js (Not Ruby ) but a great way to handle cost efficiency, unpredictable traffic, sudden bursts of traffic... Ultimately you want the whole chain of services involved in a call to be serverless, and that's when we've started leveraging Amazon DynamoDB on these projects so they'd be fully scalable.
Need to create a dashboard with a variety of charts having a good drill-down feature with good UI/UX and easy to manage users and roles with some authentication. I am confused between Superset and Metabase, so please suggest.
Periscope
- Great for learning and teaching people SQL6
- Gorgeous "share-able" and "embeddable" dashboards4
related Periscope posts
- Great UI2
- Affordable for a BI solution2
- Join multiple databases2
related Chartio posts
Mode
- Empowering for SQL-first analysts4
- Easy report building3
- Collaborative query building3
- In-app customer chat support2
- Awesome online and chat support2
- Integrated IDE with SQL + Python for analysis2
- Auto SQL query to Python dataframe1
related Mode posts
DOMO
related DOMO posts
- Cross-filtering18
- Database visualisation2
- Powerful Calculation Engine2
- Access from anywhere2
- Intuitive and complete internal ETL2
- Azure Based Service1
related Power BI posts
Looking for the best analytics software for a medium-large-sized firm. We currently use a Microsoft SQL Server database that is analyzed in Tableau desktop/published to Tableau online for users to access dashboards. Is it worth the cost savings/time to switch over to using SSRS or Power BI? Does anyone have experience migrating from Tableau to SSRS /or Power BI? Our other option is to consider using Tableau on-premises instead of online. Using custom SQL with over 3 million rows really decreases performances and results in processing times that greatly exceed our typical experience. Thanks.
Which among the two, Kyvos and Azure Analysis Services, should be used to build a Semantic Layer?
I have to build a Semantic Layer for the data warehouse platform and use Power BI for visualisation and the data lies in the Azure Managed Instance. I need to analyse the two platforms and find which suits best for the same.