Alternatives to IndexedDB logo

Alternatives to IndexedDB

SQLite, Pouchdb, MongoDB, Redis, and CouchDB are the most popular alternatives and competitors to IndexedDB.
30
86
+ 1
0

What is IndexedDB and what are its top alternatives?

This API uses indexes to enable high-performance searches of this data. While Web Storage is useful for storing smaller amounts of data, it is less useful for storing larger amounts of structured data.
IndexedDB is a tool in the Databases category of a tech stack.

Top Alternatives to IndexedDB

  • SQLite
    SQLite

    SQLite is an embedded SQL database engine. Unlike most other SQL databases, SQLite does not have a separate server process. SQLite reads and writes directly to ordinary disk files. A complete SQL database with multiple tables, indices, triggers, and views, is contained in a single disk file. ...

  • Pouchdb
    Pouchdb

    PouchDB enables applications to store data locally while offline, then synchronize it with CouchDB and compatible servers when the application is back online, keeping the user's data in sync no matter where they next login. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • Redis
    Redis

    Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache, and message broker. Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes, and streams. ...

  • CouchDB
    CouchDB

    Apache CouchDB is a database that uses JSON for documents, JavaScript for MapReduce indexes, and regular HTTP for its API. CouchDB is a database that completely embraces the web. Store your data with JSON documents. Access your documents and query your indexes with your web browser, via HTTP. Index, combine, and transform your documents with JavaScript. ...

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • PostgreSQL
    PostgreSQL

    PostgreSQL is an advanced object-relational database management system that supports an extended subset of the SQL standard, including transactions, foreign keys, subqueries, triggers, user-defined types and functions. ...

  • Microsoft SQL Server
    Microsoft SQL Server

    Microsoft® SQL Server is a database management and analysis system for e-commerce, line-of-business, and data warehousing solutions. ...

IndexedDB alternatives & related posts

SQLite logo

SQLite

16.6K
13.1K
530
A software library that implements a self-contained, serverless, zero-configuration, transactional SQL database engine
16.6K
13.1K
+ 1
530
PROS OF SQLITE
  • 162
    Lightweight
  • 135
    Portable
  • 121
    Simple
  • 80
    Sql
  • 28
    Preinstalled on iOS and Android
  • 2
    Tcl integration
  • 1
    Free
  • 1
    Portable A database on my USB 'love it'
CONS OF SQLITE
  • 2
    Not for multi-process of multithreaded apps
  • 1
    Needs different binaries for each platform

related SQLite posts

Dimelo Waterson
Shared insights
on
PostgreSQLPostgreSQLMySQLMySQLSQLiteSQLite

I need to add a DBMS to my stack, but I don't know which. I'm tempted to learn SQLite since it would be useful to me with its focus on local access without concurrency. However, doing so feels like I would be defeating the purpose of trying to expand my skill set since it seems like most enterprise applications have the opposite requirements.

To be able to apply what I learn to more projects, what should I try to learn? MySQL? PostgreSQL? Something else? Is there a comfortable middle ground between high applicability and ease of use?

See more

Hi all. I want to rewrite my system. I was a complete newbie 4 years ago and have developed a comprehensive business / finance web application that has been running successfully for 3 years (I am a business person and not a developer primarily although it seems I have become a developer). Front-end is written in native PHP (no framework) and jQuery with backend and where many processes run in MySQL. Hosted on Linux and also sends emails with attachments etc. The system logic is great and the business has grown and the system is creaking and needs to be modernised. I feel I would stick with MySql as DB and update / use Django / Spring or Laravel (because its php which I understand). To me, PHP feels old fashioned. I don't mind learning new things and also I want to set the system up that it can be easily migrated to Android/iOS app with SQLite. I would probably employ an experienced developer while also doing some myself. Please provide advice -- from my research it seems Spring/Java is the way to go ... not sure. Thanks

See more
Pouchdb logo

Pouchdb

119
231
6
Open-source JavaScript database inspired by Apache CouchDB that's designed to run well within the browser
119
231
+ 1
6
PROS OF POUCHDB
  • 2
    Offline cache
  • 1
    JSON
  • 1
    Very fast
  • 1
    Free
  • 1
    Repication
CONS OF POUCHDB
    Be the first to leave a con

    related Pouchdb posts

    Jonathan Pugh
    Software Engineer / Project Manager / Technical Architect · | 25 upvotes · 2.1M views

    I needed to choose a full stack of tools for cross platform mobile application design & development. After much research and trying different tools, these are what I came up with that work for me today:

    For the client coding I chose Framework7 because of its performance, easy learning curve, and very well designed, beautiful UI widgets. I think it's perfect for solo development or small teams. I didn't like React Native. It felt heavy to me and rigid. Framework7 allows the use of #CSS3, which I think is the best technology to come out of the #WWW movement. No other tech has been able to allow designers and developers to develop such flexible, high performance, customisable user interface elements that are highly responsive and hardware accelerated before. Now #CSS3 includes variables and flexboxes it is truly a powerful language and there is no longer a need for preprocessors such as #SCSS / #Sass / #less. React Native contains a very limited interpretation of #CSS3 which I found very frustrating after using #CSS3 for some years already and knowing its powerful features. The other very nice feature of Framework7 is that you can even build for the browser if you want your app to be available for desktop web browsers. The latest release also includes the ability to build for #Electron so you can have MacOS, Windows and Linux desktop apps. This is not possible with React Native yet.

    Framework7 runs on top of Apache Cordova. Cordova and webviews have been slated as being slow in the past. Having a game developer background I found the tweeks to make it run as smooth as silk. One of those tweeks is to use WKWebView. Another important one was using srcset on images.

    I use #Template7 for the for the templating system which is a no-nonsense mobile-centric #HandleBars style extensible templating system. It's easy to write custom helpers for, is fast and has a small footprint. I'm not forced into a new paradigm or learning some new syntax. It operates with standard JavaScript, HTML5 and CSS 3. It's written by the developer of Framework7 and so dovetails with it as expected.

    I configured TypeScript to work with the latest version of Framework7. I consider TypeScript to be one of the best creations to come out of Microsoft in some time. They must have an amazing team working on it. It's very powerful and flexible. It helps you catch a lot of bugs and also provides code completion in supporting IDEs. So for my IDE I use Visual Studio Code which is a blazingly fast and silky smooth editor that integrates seamlessly with TypeScript for the ultimate type checking setup (both products are produced by Microsoft).

    I use Webpack and Babel to compile the JavaScript. TypeScript can compile to JavaScript directly but Babel offers a few more options and polyfills so you can use the latest (and even prerelease) JavaScript features today and compile to be backwards compatible with virtually any browser. My favorite recent addition is "optional chaining" which greatly simplifies and increases readability of a number of sections of my code dealing with getting and setting data in nested objects.

    I use some Ruby scripts to process images with ImageMagick and pngquant to optimise for size and even auto insert responsive image code into the HTML5. Ruby is the ultimate cross platform scripting language. Even as your scripts become large, Ruby allows you to refactor your code easily and make it Object Oriented if necessary. I find it the quickest and easiest way to maintain certain aspects of my build process.

    For the user interface design and prototyping I use Figma. Figma has an almost identical user interface to #Sketch but has the added advantage of being cross platform (MacOS and Windows). Its real-time collaboration features are outstanding and I use them a often as I work mostly on remote projects. Clients can collaborate in real-time and see changes I make as I make them. The clickable prototyping features in Figma are also very well designed and mean I can send clickable prototypes to clients to try user interface updates as they are made and get immediate feedback. I'm currently also evaluating the latest version of #AdobeXD as an alternative to Figma as it has the very cool auto-animate feature. It doesn't have real-time collaboration yet, but I heard it is proposed for 2019.

    For the UI icons I use Font Awesome Pro. They have the largest selection and best looking icons you can find on the internet with several variations in styles so you can find most of the icons you want for standard projects.

    For the backend I was using the #GraphCool Framework. As I later found out, #GraphQL still has some way to go in order to provide the full power of a mature graph query language so later in my project I ripped out #GraphCool and replaced it with CouchDB and Pouchdb. Primarily so I could provide good offline app support. CouchDB with Pouchdb is very flexible and efficient combination and overcomes some of the restrictions I found in #GraphQL and hence #GraphCool also. The most impressive and important feature of CouchDB is its replication. You can configure it in various ways for backups, fault tolerance, caching or conditional merging of databases. CouchDB and Pouchdb even supports storing, retrieving and serving binary or image data or other mime types. This removes a level of complexity usually present in database implementations where binary or image data is usually referenced through an #HTML5 link. With CouchDB and Pouchdb apps can operate offline and sync later, very efficiently, when the network connection is good.

    I use PhoneGap when testing the app. It auto-reloads your app when its code is changed and you can also install it on Android phones to preview your app instantly. iOS is a bit more tricky cause of Apple's policies so it's not available on the App Store, but you can build it and install it yourself to your device.

    So that's my latest mobile stack. What tools do you use? Have you tried these ones?

    See more
    Mike Endale
    Shared insights
    on
    Android SDKAndroid SDKRealmRealmPouchdbPouchdb
    at

    We are building an offline-first Android SDK app. The solution we're working on runs on a mobile device in areas where internet connectivity is intermittent or does not exist. The applications needs to be able to collect data and when it reaches a home base or finds internet connectivity, we'll sync it with the host.

    We've heard Realm and Pouchdb could be a good solution, but we are curious if anyone has any experience with either or have another path forward.

    See more
    MongoDB logo

    MongoDB

    83.9K
    71.8K
    4.1K
    The database for giant ideas
    83.9K
    71.8K
    + 1
    4.1K
    PROS OF MONGODB
    • 829
      Document-oriented storage
    • 594
      No sql
    • 553
      Ease of use
    • 465
      Fast
    • 410
      High performance
    • 257
      Free
    • 218
      Open source
    • 180
      Flexible
    • 145
      Replication & high availability
    • 112
      Easy to maintain
    • 42
      Querying
    • 39
      Easy scalability
    • 38
      Auto-sharding
    • 37
      High availability
    • 31
      Map/reduce
    • 27
      Document database
    • 25
      Easy setup
    • 25
      Full index support
    • 16
      Reliable
    • 15
      Fast in-place updates
    • 14
      Agile programming, flexible, fast
    • 12
      No database migrations
    • 8
      Easy integration with Node.Js
    • 8
      Enterprise
    • 6
      Enterprise Support
    • 5
      Great NoSQL DB
    • 4
      Support for many languages through different drivers
    • 3
      Drivers support is good
    • 3
      Schemaless
    • 3
      Aggregation Framework
    • 2
      Fast
    • 2
      Managed service
    • 2
      Easy to Scale
    • 2
      Awesome
    • 2
      Consistent
    • 1
      Good GUI
    • 1
      Acid Compliant
    CONS OF MONGODB
    • 6
      Very slowly for connected models that require joins
    • 3
      Not acid compliant
    • 1
      Proprietary query language

    related MongoDB posts

    Jeyabalaji Subramanian

    Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

    We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

    Based on the above criteria, we selected the following tools to perform the end to end data replication:

    We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

    We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

    In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

    Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

    In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

    See more
    Robert Zuber

    We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

    As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

    When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

    See more
    Redis logo

    Redis

    54.2K
    41.2K
    3.9K
    Open source (BSD licensed), in-memory data structure store
    54.2K
    41.2K
    + 1
    3.9K
    PROS OF REDIS
    • 882
      Performance
    • 540
      Super fast
    • 510
      Ease of use
    • 441
      In-memory cache
    • 321
      Advanced key-value cache
    • 191
      Open source
    • 180
      Easy to deploy
    • 163
      Stable
    • 153
      Free
    • 120
      Fast
    • 40
      High-Performance
    • 39
      High Availability
    • 34
      Data Structures
    • 31
      Very Scalable
    • 23
      Replication
    • 21
      Great community
    • 21
      Pub/Sub
    • 17
      "NoSQL" key-value data store
    • 14
      Hashes
    • 12
      Sets
    • 10
      Sorted Sets
    • 9
      Lists
    • 8
      BSD licensed
    • 8
      NoSQL
    • 7
      Integrates super easy with Sidekiq for Rails background
    • 7
      Async replication
    • 7
      Bitmaps
    • 6
      Keys with a limited time-to-live
    • 6
      Open Source
    • 5
      Strings
    • 5
      Lua scripting
    • 4
      Hyperloglogs
    • 4
      Awesomeness for Free!
    • 3
      Transactions
    • 3
      Runs server side LUA
    • 3
      outstanding performance
    • 3
      Networked
    • 3
      LRU eviction of keys
    • 3
      Written in ANSI C
    • 3
      Feature Rich
    • 2
      Performance & ease of use
    • 2
      Data structure server
    • 1
      Simple
    • 1
      Channels concept
    • 1
      Scalable
    • 1
      Temporarily kept on disk
    • 1
      Dont save data if no subscribers are found
    • 1
      Automatic failover
    • 1
      Easy to use
    • 1
      Existing Laravel Integration
    • 1
      Object [key/value] size each 500 MB
    CONS OF REDIS
    • 15
      Cannot query objects directly
    • 3
      No secondary indexes for non-numeric data types
    • 1
      No WAL

    related Redis posts

    Robert Zuber

    We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

    As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

    When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

    See more

    I'm working as one of the engineering leads in RunaHR. As our platform is a Saas, we thought It'd be good to have an API (We chose Ruby and Rails for this) and a SPA (built with React and Redux ) connected. We started the SPA with Create React App since It's pretty easy to start.

    We use Jest as the testing framework and react-testing-library to test React components. In Rails we make tests using RSpec.

    Our main database is PostgreSQL, but we also use MongoDB to store some type of data. We started to use Redis  for cache and other time sensitive operations.

    We have a couple of extra projects: One is an Employee app built with React Native and the other is an internal back office dashboard built with Next.js for the client and Python in the backend side.

    Since we have different frontend apps we have found useful to have Bit to document visual components and utils in JavaScript.

    See more
    CouchDB logo

    CouchDB

    478
    551
    139
    HTTP + JSON document database with Map Reduce views and peer-based replication
    478
    551
    + 1
    139
    PROS OF COUCHDB
    • 43
      JSON
    • 30
      Open source
    • 18
      Highly available
    • 12
      Partition tolerant
    • 11
      Eventual consistency
    • 7
      Sync
    • 5
      REST API
    • 4
      Attachments mechanism to docs
    • 4
      Multi master replication
    • 3
      Changes feed
    • 1
      REST interface
    • 1
      js- and erlang-views
    CONS OF COUCHDB
      Be the first to leave a con

      related CouchDB posts

      Jonathan Pugh
      Software Engineer / Project Manager / Technical Architect · | 25 upvotes · 2.1M views

      I needed to choose a full stack of tools for cross platform mobile application design & development. After much research and trying different tools, these are what I came up with that work for me today:

      For the client coding I chose Framework7 because of its performance, easy learning curve, and very well designed, beautiful UI widgets. I think it's perfect for solo development or small teams. I didn't like React Native. It felt heavy to me and rigid. Framework7 allows the use of #CSS3, which I think is the best technology to come out of the #WWW movement. No other tech has been able to allow designers and developers to develop such flexible, high performance, customisable user interface elements that are highly responsive and hardware accelerated before. Now #CSS3 includes variables and flexboxes it is truly a powerful language and there is no longer a need for preprocessors such as #SCSS / #Sass / #less. React Native contains a very limited interpretation of #CSS3 which I found very frustrating after using #CSS3 for some years already and knowing its powerful features. The other very nice feature of Framework7 is that you can even build for the browser if you want your app to be available for desktop web browsers. The latest release also includes the ability to build for #Electron so you can have MacOS, Windows and Linux desktop apps. This is not possible with React Native yet.

      Framework7 runs on top of Apache Cordova. Cordova and webviews have been slated as being slow in the past. Having a game developer background I found the tweeks to make it run as smooth as silk. One of those tweeks is to use WKWebView. Another important one was using srcset on images.

      I use #Template7 for the for the templating system which is a no-nonsense mobile-centric #HandleBars style extensible templating system. It's easy to write custom helpers for, is fast and has a small footprint. I'm not forced into a new paradigm or learning some new syntax. It operates with standard JavaScript, HTML5 and CSS 3. It's written by the developer of Framework7 and so dovetails with it as expected.

      I configured TypeScript to work with the latest version of Framework7. I consider TypeScript to be one of the best creations to come out of Microsoft in some time. They must have an amazing team working on it. It's very powerful and flexible. It helps you catch a lot of bugs and also provides code completion in supporting IDEs. So for my IDE I use Visual Studio Code which is a blazingly fast and silky smooth editor that integrates seamlessly with TypeScript for the ultimate type checking setup (both products are produced by Microsoft).

      I use Webpack and Babel to compile the JavaScript. TypeScript can compile to JavaScript directly but Babel offers a few more options and polyfills so you can use the latest (and even prerelease) JavaScript features today and compile to be backwards compatible with virtually any browser. My favorite recent addition is "optional chaining" which greatly simplifies and increases readability of a number of sections of my code dealing with getting and setting data in nested objects.

      I use some Ruby scripts to process images with ImageMagick and pngquant to optimise for size and even auto insert responsive image code into the HTML5. Ruby is the ultimate cross platform scripting language. Even as your scripts become large, Ruby allows you to refactor your code easily and make it Object Oriented if necessary. I find it the quickest and easiest way to maintain certain aspects of my build process.

      For the user interface design and prototyping I use Figma. Figma has an almost identical user interface to #Sketch but has the added advantage of being cross platform (MacOS and Windows). Its real-time collaboration features are outstanding and I use them a often as I work mostly on remote projects. Clients can collaborate in real-time and see changes I make as I make them. The clickable prototyping features in Figma are also very well designed and mean I can send clickable prototypes to clients to try user interface updates as they are made and get immediate feedback. I'm currently also evaluating the latest version of #AdobeXD as an alternative to Figma as it has the very cool auto-animate feature. It doesn't have real-time collaboration yet, but I heard it is proposed for 2019.

      For the UI icons I use Font Awesome Pro. They have the largest selection and best looking icons you can find on the internet with several variations in styles so you can find most of the icons you want for standard projects.

      For the backend I was using the #GraphCool Framework. As I later found out, #GraphQL still has some way to go in order to provide the full power of a mature graph query language so later in my project I ripped out #GraphCool and replaced it with CouchDB and Pouchdb. Primarily so I could provide good offline app support. CouchDB with Pouchdb is very flexible and efficient combination and overcomes some of the restrictions I found in #GraphQL and hence #GraphCool also. The most impressive and important feature of CouchDB is its replication. You can configure it in various ways for backups, fault tolerance, caching or conditional merging of databases. CouchDB and Pouchdb even supports storing, retrieving and serving binary or image data or other mime types. This removes a level of complexity usually present in database implementations where binary or image data is usually referenced through an #HTML5 link. With CouchDB and Pouchdb apps can operate offline and sync later, very efficiently, when the network connection is good.

      I use PhoneGap when testing the app. It auto-reloads your app when its code is changed and you can also install it on Android phones to preview your app instantly. iOS is a bit more tricky cause of Apple's policies so it's not available on the App Store, but you can build it and install it yourself to your device.

      So that's my latest mobile stack. What tools do you use? Have you tried these ones?

      See more
      Gabriel Pa

      We implemented our first large scale EPR application from naologic.com using CouchDB .

      Very fast, replication works great, doesn't consume much RAM, queries are blazing fast but we found a problem: the queries were very hard to write, it took a long time to figure out the API, we had to go and write our own @nodejs library to make it work properly.

      It lost most of its support. Since then, we migrated to Couchbase and the learning curve was steep but all worth it. Memcached indexing out of the box, full text search works great.

      See more
      MySQL logo

      MySQL

      111.5K
      93.1K
      3.7K
      The world's most popular open source database
      111.5K
      93.1K
      + 1
      3.7K
      PROS OF MYSQL
      • 799
        Sql
      • 678
        Free
      • 559
        Easy
      • 527
        Widely used
      • 488
        Open source
      • 180
        High availability
      • 160
        Cross-platform support
      • 104
        Great community
      • 78
        Secure
      • 75
        Full-text indexing and searching
      • 25
        Fast, open, available
      • 16
        SSL support
      • 15
        Reliable
      • 14
        Robust
      • 8
        Enterprise Version
      • 7
        Easy to set up on all platforms
      • 2
        NoSQL access to JSON data type
      • 1
        Relational database
      • 1
        Easy, light, scalable
      • 1
        Sequel Pro (best SQL GUI)
      • 1
        Replica Support
      CONS OF MYSQL
      • 15
        Owned by a company with their own agenda
      • 3
        Can't roll back schema changes

      related MySQL posts

      Tim Abbott

      We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

      We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

      And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

      I can't recommend it highly enough.

      See more
      Conor Myhrvold
      Tech Brand Mgr, Office of CTO at Uber · | 22 upvotes · 1.5M views

      Our most popular (& controversial!) article to date on the Uber Engineering blog in 3+ yrs. Why we moved from PostgreSQL to MySQL. In essence, it was due to a variety of limitations of Postgres at the time. Fun fact -- earlier in Uber's history we'd actually moved from MySQL to Postgres before switching back for good, & though we published the article in Summer 2016 we haven't looked back since:

      The early architecture of Uber consisted of a monolithic backend application written in Python that used Postgres for data persistence. Since that time, the architecture of Uber has changed significantly, to a model of microservices and new data platforms. Specifically, in many of the cases where we previously used Postgres, we now use Schemaless, a novel database sharding layer built on top of MySQL (https://eng.uber.com/schemaless-part-one/). In this article, we’ll explore some of the drawbacks we found with Postgres and explain the decision to build Schemaless and other backend services on top of MySQL:

      https://eng.uber.com/mysql-migration/

      See more
      PostgreSQL logo

      PostgreSQL

      87.8K
      71.7K
      3.5K
      A powerful, open source object-relational database system
      87.8K
      71.7K
      + 1
      3.5K
      PROS OF POSTGRESQL
      • 756
        Relational database
      • 508
        High availability
      • 436
        Enterprise class database
      • 380
        Sql
      • 303
        Sql + nosql
      • 171
        Great community
      • 145
        Easy to setup
      • 130
        Heroku
      • 128
        Secure by default
      • 112
        Postgis
      • 48
        Supports Key-Value
      • 46
        Great JSON support
      • 32
        Cross platform
      • 30
        Extensible
      • 26
        Replication
      • 24
        Triggers
      • 22
        Rollback
      • 21
        Multiversion concurrency control
      • 20
        Open source
      • 17
        Heroku Add-on
      • 14
        Stable, Simple and Good Performance
      • 13
        Powerful
      • 12
        Lets be serious, what other SQL DB would you go for?
      • 9
        Good documentation
      • 7
        Intelligent optimizer
      • 7
        Scalable
      • 6
        Free
      • 6
        Reliable
      • 6
        Transactional DDL
      • 6
        Modern
      • 5
        One stop solution for all things sql no matter the os
      • 4
        Relational database with MVCC
      • 3
        Full-Text Search
      • 3
        Faster Development
      • 3
        Developer friendly
      • 2
        search
      • 2
        Excellent source code
      • 2
        Great DB for Transactional system or Application
      • 1
        Free version
      • 1
        Full-text
      • 1
        Open-source
      • 1
        Text
      CONS OF POSTGRESQL
      • 9
        Table/index bloatings

      related PostgreSQL posts

      Jeyabalaji Subramanian

      Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

      We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

      Based on the above criteria, we selected the following tools to perform the end to end data replication:

      We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

      We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

      In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

      Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

      In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

      See more
      Tim Abbott

      We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

      We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

      And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

      I can't recommend it highly enough.

      See more
      Microsoft SQL Server logo

      Microsoft SQL Server

      18.3K
      13.5K
      539
      A relational database management system developed by Microsoft
      18.3K
      13.5K
      + 1
      539
      PROS OF MICROSOFT SQL SERVER
      • 139
        Reliable and easy to use
      • 102
        High performance
      • 95
        Great with .net
      • 65
        Works well with .net
      • 56
        Easy to maintain
      • 21
        Azure support
      • 17
        Always on
      • 17
        Full Index Support
      • 10
        Enterprise manager is fantastic
      • 9
        In-Memory OLTP Engine
      • 2
        Security is forefront
      • 1
        Columnstore indexes
      • 1
        Great documentation
      • 1
        Faster Than Oracle
      • 1
        Decent management tools
      • 1
        Easy to setup and configure
      • 1
        Docker Delivery
      CONS OF MICROSOFT SQL SERVER
      • 4
        Expensive Licensing
      • 2
        Microsoft

      related Microsoft SQL Server posts

      We initially started out with Heroku as our PaaS provider due to a desire to use it by our original developer for our Ruby on Rails application/website at the time. We were finding response times slow, it was painfully slow, sometimes taking 10 seconds to start loading the main page. Moving up to the next "compute" level was going to be very expensive.

      We moved our site over to AWS Elastic Beanstalk , not only did response times on the site practically become instant, our cloud bill for the application was cut in half.

      In database world we are currently using Amazon RDS for PostgreSQL also, we have both MariaDB and Microsoft SQL Server both hosted on Amazon RDS. The plan is to migrate to AWS Aurora Serverless for all 3 of those database systems.

      Additional services we use for our public applications: AWS Lambda, Python, Redis, Memcached, AWS Elastic Load Balancing (ELB), Amazon Elasticsearch Service, Amazon ElastiCache

      See more

      I am a Microsoft SQL Server programmer who is a bit out of practice. I have been asked to assist on a new project. The overall purpose is to organize a large number of recordings so that they can be searched. I have an enormous music library but my songs are several hours long. I need to include things like time, date and location of the recording. I don't have a problem with the general database design. I have two primary questions:

      1. I need to use either MySQL or PostgreSQL on a Linux based OS. Which would be better for this application?
      2. I have not dealt with a sound based data type before. How do I store that and put it in a table? Thank you.
      See more