Alternatives to Google Cloud Functions logo

Alternatives to Google Cloud Functions

AWS Lambda, Google App Engine, Azure Functions, Firebase, and Heroku are the most popular alternatives and competitors to Google Cloud Functions.
341
338
+ 1
17

What is Google Cloud Functions and what are its top alternatives?

Construct applications from bite-sized business logic billed to the nearest 100 milliseconds, only while your code is running
Google Cloud Functions is a tool in the Serverless / Task Processing category of a tech stack.

Top Alternatives to Google Cloud Functions

  • AWS Lambda

    AWS Lambda

    AWS Lambda is a compute service that runs your code in response to events and automatically manages the underlying compute resources for you. You can use AWS Lambda to extend other AWS services with custom logic, or create your own back-end services that operate at AWS scale, performance, and security. ...

  • Google App Engine

    Google App Engine

    Google has a reputation for highly reliable, high performance infrastructure. With App Engine you can take advantage of the 10 years of knowledge Google has in running massively scalable, performance driven systems. App Engine applications are easy to build, easy to maintain, and easy to scale as your traffic and data storage needs grow. ...

  • Azure Functions

    Azure Functions

    Azure Functions is an event driven, compute-on-demand experience that extends the existing Azure application platform with capabilities to implement code triggered by events occurring in virtually any Azure or 3rd party service as well as on-premises systems. ...

  • Firebase

    Firebase

    Firebase is a cloud service designed to power real-time, collaborative applications. Simply add the Firebase library to your application to gain access to a shared data structure; any changes you make to that data are automatically synchronized with the Firebase cloud and with other clients within milliseconds. ...

  • Heroku

    Heroku

    Heroku is a cloud application platform – a new way of building and deploying web apps. Heroku lets app developers spend 100% of their time on their application code, not managing servers, deployment, ongoing operations, or scaling. ...

  • Knative

    Knative

    Knative provides a set of middleware components that are essential to build modern, source-centric, and container-based applications that can run anywhere: on premises, in the cloud, or even in a third-party data center ...

  • Serverless

    Serverless

    Build applications comprised of microservices that run in response to events, auto-scale for you, and only charge you when they run. This lowers the total cost of maintaining your apps, enabling you to build more logic, faster. The Framework uses new event-driven compute services, like AWS Lambda, Google CloudFunctions, and more. ...

  • Cloud Functions for Firebase

    Cloud Functions for Firebase

    Cloud Functions for Firebase lets you create functions that are triggered by Firebase products, such as changes to data in the Realtime Database, uploads to Cloud Storage, new user sign ups via Authentication, and conversion events in Analytics. ...

Google Cloud Functions alternatives & related posts

AWS Lambda logo

AWS Lambda

13.9K
10.2K
408
Automatically run code in response to modifications to objects in Amazon S3 buckets, messages in Kinesis streams, or...
13.9K
10.2K
+ 1
408
PROS OF AWS LAMBDA
  • 126
    No infrastructure
  • 80
    Cheap
  • 67
    Quick
  • 57
    Stateless
  • 46
    No deploy, no server, great sleep
  • 9
    AWS Lambda went down taking many sites with it
  • 5
    Extensive API
  • 5
    Event Driven Governance
  • 5
    Easy to deploy
  • 4
    Auto scale and cost effective
  • 3
    VPC Support
  • 1
    Integrated with various AWS services
CONS OF AWS LAMBDA
  • 5
    Cant execute ruby or go
  • 0
    Can't execute PHP w/o significant effort

related AWS Lambda posts

Jeyabalaji Subramanian

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Tim Nolet

Heroku Docker GitHub Node.js hapi Vue.js AWS Lambda Amazon S3 PostgreSQL Knex.js Checkly is a fairly young company and we're still working hard to find the correct mix of product features, price and audience.

We are focussed on tech B2B, but I always wanted to serve solo developers too. So I decided to make a $7 plan.

Why $7? Simply put, it seems to be a sweet spot for tech companies: Heroku, Docker, Github, Appoptics (Librato) all offer $7 plans. They must have done a ton of research into this, so why not piggy back that and try it out.

Enough biz talk, onto tech. The challenges were:

  • Slice of a portion of the functionality so a $7 plan is still profitable. We call this the "plan limits"
  • Update API and back end services to handle and enforce plan limits.
  • Update the UI to kindly state plan limits are in effect on some part of the UI.
  • Update the pricing page to reflect all changes.
  • Keep the actual processing backend, storage and API's as untouched as possible.

In essence, we went from strictly volume based pricing to value based pricing. Here come the technical steps & decisions we made to get there.

  1. We updated our PostgreSQL schema so plans now have an array of "features". These are string constants that represent feature toggles.
  2. The Vue.js frontend reads these from the vuex store on login.
  3. Based on these values, the UI has simple v-if statements to either just show the feature or show a friendly "please upgrade" button.
  4. The hapi API has a hook on each relevant API endpoint that checks whether a user's plan has the feature enabled, or not.

Side note: We offer 10 SMS messages per month on the developer plan. However, we were not actually counting how many people were sending. We had to update our alerting daemon (that runs on Heroku and triggers SMS messages via AWS SNS) to actually bump a counter.

What we build is basically feature-toggling based on plan features. It is very extensible for future additions. Our scheduling and storage backend that actually runs users' monitoring requests (AWS Lambda) and stores the results (S3 and Postgres) has no knowledge of all of this and remained unchanged.

Hope this helps anyone building out their SaaS and is in a similar situation.

See more
Google App Engine logo

Google App Engine

6.6K
4.9K
612
Build web applications on the same scalable systems that power Google applications
6.6K
4.9K
+ 1
612
PROS OF GOOGLE APP ENGINE
  • 143
    Easy to deploy
  • 108
    Auto scaling
  • 80
    Good free plan
  • 64
    Easy management
  • 58
    Scalability
  • 36
    Low cost
  • 33
    Comprehensive set of features
  • 29
    All services in one place
  • 23
    Simple scaling
  • 20
    Quick and reliable cloud servers
  • 5
    Granular Billing
  • 4
    Easy to develop and unit test
  • 3
    Monitoring gives comprehensive set of key indicators
  • 2
    Create APIs quickly with cloud endpoints
  • 2
    Really easy to quickly bring up a full stack
  • 1
    Mostly up
  • 1
    No Ops
CONS OF GOOGLE APP ENGINE
    Be the first to leave a con

    related Google App Engine posts

    Nick Rockwell
    SVP, Engineering at Fastly · | 11 upvotes · 240.8K views

    So, the shift from Amazon EC2 to Google App Engine and generally #AWS to #GCP was a long decision and in the end, it's one that we've taken with eyes open and that we reserve the right to modify at any time. And to be clear, we continue to do a lot of stuff with AWS. But, by default, the content of the decision was, for our consumer-facing products, we're going to use GCP first. And if there's some reason why we don't think that's going to work out great, then we'll happily use AWS. In practice, that hasn't really happened. We've been able to meet almost 100% of our needs in GCP.

    So it's basically mostly Google Kubernetes Engine , we're mostly running stuff on Kubernetes right now.

    #AWStoGCPmigration #cloudmigration #migration

    See more
    Aliadoc Team

    In #Aliadoc, we're exploring the crowdfunding option to get traction before launch. We are building a SaaS platform for website design customization.

    For the Admin UI and website editor we use React and we're currently transitioning from a Create React App setup to a custom one because our needs have become more specific. We use CloudFlare as much as possible, it's a great service.

    For routing dynamic resources and proxy tasks to feed websites to the editor we leverage CloudFlare Workers for improved responsiveness. We use Firebase for our hosting needs and user authentication while also using several Cloud Functions for Firebase to interact with other services along with Google App Engine and Google Cloud Storage, but also the Real Time Database is on the radar for collaborative website editing.

    We generally hate configuration but honestly because of the stage of our project we lack resources for doing heavy sysops work. So we are basically just relying on Serverless technologies as much as we can to do all server side processing.

    Visual Studio Code definitively makes programming a much easier and enjoyable task, we just love it. We combine it with Bitbucket for our source code control needs.

    See more
    Azure Functions logo

    Azure Functions

    404
    433
    38
    Listen and react to events across your stack
    404
    433
    + 1
    38
    PROS OF AZURE FUNCTIONS
    • 11
      Pay only when invoked
    • 8
      Great developer experience for C#
    • 5
      Multiple languages supported
    • 5
      Great debugging support
    • 2
      Poor developer experience for C#
    • 2
      Easy scalability
    • 2
      Can be used as lightweight https service
    • 1
      Event driven
    • 1
      Azure component events for Storage, services etc
    • 1
      WebHooks
    CONS OF AZURE FUNCTIONS
      Be the first to leave a con

      related Azure Functions posts

      Kestas Barzdaitis
      Entrepreneur & Engineer · | 16 upvotes · 389.2K views

      CodeFactor being a #SAAS product, our goal was to run on a cloud-native infrastructure since day one. We wanted to stay product focused, rather than having to work on the infrastructure that supports the application. We needed a cloud-hosting provider that would be reliable, economical and most efficient for our product.

      CodeFactor.io aims to provide an automated and frictionless code review service for software developers. That requires agility, instant provisioning, autoscaling, security, availability and compliance management features. We looked at the top three #IAAS providers that take up the majority of market share: Amazon's Amazon EC2 , Microsoft's Microsoft Azure, and Google Compute Engine.

      AWS has been available since 2006 and has developed the most extensive services ant tools variety at a massive scale. Azure and GCP are about half the AWS age, but also satisfied our technical requirements.

      It is worth noting that even though all three providers support Docker containerization services, GCP has the most robust offering due to their investments in Kubernetes. Also, if you are a Microsoft shop, and develop in .NET - Visual Studio Azure shines at integration there and all your existing .NET code works seamlessly on Azure. All three providers have serverless computing offerings (AWS Lambda, Azure Functions, and Google Cloud Functions). Additionally, all three providers have machine learning tools, but GCP appears to be the most developer-friendly, intuitive and complete when it comes to #Machinelearning and #AI.

      The prices between providers are competitive across the board. For our requirements, AWS would have been the most expensive, GCP the least expensive and Azure was in the middle. Plus, if you #Autoscale frequently with large deltas, note that Azure and GCP have per minute billing, where AWS bills you per hour. We also applied for the #Startup programs with all three providers, and this is where Azure shined. While AWS and GCP for startups would have covered us for about one year of infrastructure costs, Azure Sponsorship would cover about two years of CodeFactor's hosting costs. Moreover, Azure Team was terrific - I felt that they wanted to work with us where for AWS and GCP we were just another startup.

      In summary, we were leaning towards GCP. GCP's advantages in containerization, automation toolset, #Devops mindset, and pricing were the driving factors there. Nevertheless, we could not say no to Azure's financial incentives and a strong sense of partnership and support throughout the process.

      Bottom line is, IAAS offerings with AWS, Azure, and GCP are evolving fast. At CodeFactor, we aim to be platform agnostic where it is practical and retain the flexibility to cherry-pick the best products across providers.

      See more
      Michal Nowak

      In a couple of recent projects we had an opportunity to try out the new Serverless approach to building web applications. It wasn't necessarily a question if we should use any particular vendor but rather "if" we can consider serverless a viable option for building apps. Obviously our goal was also to get a feel for this technology and gain some hands-on experience.

      We did consider AWS Lambda, Firebase from Google as well as Azure Functions. Eventually we went with AWS Lambdas.

      PROS
      • No servers to manage (obviously!)
      • Limited fixed costs – you pay only for used time
      • Automated scaling and balancing
      • Automatic failover (or, at this level of abstraction, no failover problem at all)
      • Security easier to provide and audit
      • Low overhead at the start (with the certain level of knowledge)
      • Short time to market
      • Easy handover - deployment coupled with code
      • Perfect choice for lean startups with fast-paced iterations
      • Augmentation for the classic cloud, server(full) approach
      CONS
      • Not much know-how and best practices available about structuring the code and projects on the market
      • Not suitable for complex business logic due to the risk of producing highly coupled code
      • Cost difficult to estimate (helpful tools: serverlesscalc.com)
      • Difficulty in migration to other platforms (Vendor lock⚠️)
      • Little engineers with experience in serverless on the job market
      • Steep learning curve for engineers without any cloud experience

      More details are on our blog: https://evojam.com/blog/2018/12/5/should-you-go-serverless-meet-the-benefits-and-flaws-of-new-wave-of-cloud-solutions I hope it helps 🙌 & I'm curious of your experiences.

      See more
      Firebase logo

      Firebase

      22.7K
      18.8K
      1.9K
      The Realtime App Platform
      22.7K
      18.8K
      + 1
      1.9K
      PROS OF FIREBASE
      • 357
        Realtime backend made easy
      • 261
        Fast and responsive
      • 233
        Easy setup
      • 206
        Real-time
      • 184
        JSON
      • 126
        Free
      • 120
        Backed by google
      • 80
        Angular adaptor
      • 62
        Reliable
      • 36
        Great customer support
      • 25
        Great documentation
      • 22
        Real-time synchronization
      • 19
        Mobile friendly
      • 17
        Rapid prototyping
      • 12
        Great security
      • 10
        Automatic scaling
      • 9
        Freakingly awesome
      • 8
        Angularfire is an amazing addition!
      • 8
        Chat
      • 8
        Super fast development
      • 6
        Awesome next-gen backend
      • 6
        Ios adaptor
      • 5
        Built in user auth/oauth
      • 5
        Firebase hosting
      • 4
        Very easy to use
      • 3
        Great
      • 3
        It's made development super fast
      • 3
        Speed of light
      • 3
        Brilliant for startups
      • 2
        Low battery consumption
      • 2
        JS Offline and Sync suport
      • 2
        The concurrent updates create a great experience
      • 2
        I can quickly create static web apps with no backend
      • 2
        Great all-round functionality
      • 1
        Easy Reactjs integration
      • 1
        .net
      • 1
        Large
      • 1
        Faster workflow
      • 1
        Push notification
      • 1
        Serverless
      • 1
        Good Free Limits
      • 1
        Easy to use
      CONS OF FIREBASE
      • 26
        Can become expensive
      • 14
        No open source, you depend on external company
      • 14
        Scalability is not infinite
      • 9
        Not Flexible Enough
      • 5
        Cant filter queries
      • 3
        Very unstable server
      • 2
        Too many errors
      • 2
        No Relational Data

      related Firebase posts

      Tassanai Singprom

      This is my stack in Application & Data

      JavaScript PHP HTML5 jQuery Redis Amazon EC2 Ubuntu Sass Vue.js Firebase Laravel Lumen Amazon RDS GraphQL MariaDB

      My Utilities Tools

      Google Analytics Postman Elasticsearch

      My Devops Tools

      Git GitHub GitLab npm Visual Studio Code Kibana Sentry BrowserStack

      My Business Tools

      Slack

      See more

      We are starting to work on a web-based platform aiming to connect artists (clients) and professional freelancers (service providers). In-app, timeline-based, real-time communication between users (& storing it), file transfers, and push notifications are essential core features. We are considering using Node.js, ExpressJS, React, MongoDB stack with Socket.IO & Apollo, or maybe using Real-Time Database and functionalities of Firebase.

      See more
      Heroku logo

      Heroku

      17.1K
      12.9K
      3.2K
      Build, deliver, monitor and scale web apps and APIs with a trail blazing developer experience.
      17.1K
      12.9K
      + 1
      3.2K
      PROS OF HEROKU
      • 703
        Easy deployment
      • 460
        Free for side projects
      • 374
        Huge time-saver
      • 348
        Simple scaling
      • 261
        Low devops skills required
      • 189
        Easy setup
      • 174
        Add-ons for almost everything
      • 153
        Beginner friendly
      • 149
        Better for startups
      • 133
        Low learning curve
      • 47
        Postgres hosting
      • 41
        Easy to add collaborators
      • 30
        Faster development
      • 24
        Awesome documentation
      • 19
        Simple rollback
      • 18
        Focus on product, not deployment
      • 15
        Easy integration
      • 15
        Natural companion for rails development
      • 11
        Great customer support
      • 7
        GitHub integration
      • 6
        No-ops
      • 5
        Painless & well documented
      • 3
        Just works
      • 3
        Free
      • 2
        PostgreSQL forking and following
      • 2
        I love that they make it free to launch a side project
      • 2
        Great UI
      • 2
        MySQL extension
      CONS OF HEROKU
      • 22
        Super expensive
      • 6
        No usable MySQL option
      • 6
        Not a whole lot of flexibility
      • 5
        Storage
      • 4
        Low performance on free tier

      related Heroku posts

      Russel Werner
      Lead Engineer at StackShare · | 29 upvotes · 1.3M views

      StackShare Feed is built entirely with React, Glamorous, and Apollo. One of our objectives with the public launch of the Feed was to enable a Server-side rendered (SSR) experience for our organic search traffic. When you visit the StackShare Feed, and you aren't logged in, you are delivered the Trending feed experience. We use an in-house Node.js rendering microservice to generate this HTML. This microservice needs to run and serve requests independent of our Rails web app. Up until recently, we had a mono-repo with our Rails and React code living happily together and all served from the same web process. In order to deploy our SSR app into a Heroku environment, we needed to split out our front-end application into a separate repo in GitHub. The driving factor in this decision was mostly due to limitations imposed by Heroku specifically with how processes can't communicate with each other. A new SSR app was created in Heroku and linked directly to the frontend repo so it stays in-sync with changes.

      Related to this, we need a way to "deploy" our frontend changes to various server environments without building & releasing the entire Ruby application. We built a hybrid Amazon S3 Amazon CloudFront solution to host our Webpack bundles. A new CircleCI script builds the bundles and uploads them to S3. The final step in our rollout is to update some keys in Redis so our Rails app knows which bundles to serve. The result of these efforts were significant. Our frontend team now moves independently of our backend team, our build & release process takes only a few minutes, we are now using an edge CDN to serve JS assets, and we have pre-rendered React pages!

      #StackDecisionsLaunch #SSR #Microservices #FrontEndRepoSplit

      See more
      Simon Reymann
      Senior Fullstack Developer at QUANTUSflow Software GmbH · | 28 upvotes · 2.2M views

      Our whole DevOps stack consists of the following tools:

      • GitHub (incl. GitHub Pages/Markdown for Documentation, GettingStarted and HowTo's) for collaborative review and code management tool
      • Respectively Git as revision control system
      • SourceTree as Git GUI
      • Visual Studio Code as IDE
      • CircleCI for continuous integration (automatize development process)
      • Prettier / TSLint / ESLint as code linter
      • SonarQube as quality gate
      • Docker as container management (incl. Docker Compose for multi-container application management)
      • VirtualBox for operating system simulation tests
      • Kubernetes as cluster management for docker containers
      • Heroku for deploying in test environments
      • nginx as web server (preferably used as facade server in production environment)
      • SSLMate (using OpenSSL) for certificate management
      • Amazon EC2 (incl. Amazon S3) for deploying in stage (production-like) and production environments
      • PostgreSQL as preferred database system
      • Redis as preferred in-memory database/store (great for caching)

      The main reason we have chosen Kubernetes over Docker Swarm is related to the following artifacts:

      • Key features: Easy and flexible installation, Clear dashboard, Great scaling operations, Monitoring is an integral part, Great load balancing concepts, Monitors the condition and ensures compensation in the event of failure.
      • Applications: An application can be deployed using a combination of pods, deployments, and services (or micro-services).
      • Functionality: Kubernetes as a complex installation and setup process, but it not as limited as Docker Swarm.
      • Monitoring: It supports multiple versions of logging and monitoring when the services are deployed within the cluster (Elasticsearch/Kibana (ELK), Heapster/Grafana, Sysdig cloud integration).
      • Scalability: All-in-one framework for distributed systems.
      • Other Benefits: Kubernetes is backed by the Cloud Native Computing Foundation (CNCF), huge community among container orchestration tools, it is an open source and modular tool that works with any OS.
      See more
      Knative logo

      Knative

      60
      210
      14
      Kubernetes-based platform for serverless workloads
      60
      210
      + 1
      14
      PROS OF KNATIVE
      • 3
        Portability
      • 3
        On top of Kubernetes
      • 3
        Autoscaling
      • 2
        Eventing
      • 2
        Open source
      • 1
        Secure Eventing
      CONS OF KNATIVE
        Be the first to leave a con

        related Knative posts

        Serverless logo

        Serverless

        976
        881
        21
        The most widely-adopted toolkit for building serverless applications
        976
        881
        + 1
        21
        PROS OF SERVERLESS
        • 12
          API integration
        • 6
          Supports cloud functions for Google, Azure, and IBM
        • 2
          Lower cost
        • 1
          Auto scale
        • 0
          Openwhisk
        CONS OF SERVERLESS
          Be the first to leave a con

          related Serverless posts

          Nitzan Shapira

          At Epsagon, we use hundreds of AWS Lambda functions, most of them are written in Python, and the Serverless Framework to pack and deploy them. One of the issues we've encountered is the difficulty to package external libraries into the Lambda environment using the Serverless Framework. This limitation is probably by design since the external code your Lambda needs can be usually included with a package manager.

          In order to overcome this issue, we've developed a tool, which we also published as open-source (see link below), which automatically packs these libraries using a simple npm package and a YAML configuration file. Support for Node.js, Go, and Java will be available soon.

          The GitHub respoitory: https://github.com/epsagon/serverless-package-external

          See more
          Praveen Mooli
          Engineering Manager at Taylor and Francis · | 14 upvotes · 1.6M views

          We are in the process of building a modern content platform to deliver our content through various channels. We decided to go with Microservices architecture as we wanted scale. Microservice architecture style is an approach to developing an application as a suite of small independently deployable services built around specific business capabilities. You can gain modularity, extensive parallelism and cost-effective scaling by deploying services across many distributed servers. Microservices modularity facilitates independent updates/deployments, and helps to avoid single point of failure, which can help prevent large-scale outages. We also decided to use Event Driven Architecture pattern which is a popular distributed asynchronous architecture pattern used to produce highly scalable applications. The event-driven architecture is made up of highly decoupled, single-purpose event processing components that asynchronously receive and process events.

          To build our #Backend capabilities we decided to use the following: 1. #Microservices - Java with Spring Boot , Node.js with ExpressJS and Python with Flask 2. #Eventsourcingframework - Amazon Kinesis , Amazon Kinesis Firehose , Amazon SNS , Amazon SQS, AWS Lambda 3. #Data - Amazon RDS , Amazon DynamoDB , Amazon S3 , MongoDB Atlas

          To build #Webapps we decided to use Angular 2 with RxJS

          #Devops - GitHub , Travis CI , Terraform , Docker , Serverless

          See more
          Cloud Functions for Firebase logo

          Cloud Functions for Firebase

          382
          310
          3
          Run your mobile backend code without managing servers
          382
          310
          + 1
          3
          PROS OF CLOUD FUNCTIONS FOR FIREBASE
          • 3
            Up and running
          CONS OF CLOUD FUNCTIONS FOR FIREBASE
            Be the first to leave a con

            related Cloud Functions for Firebase posts

            Eugene Cheah

            For inboxkitten.com, an opensource disposable email service;

            We migrated our serverless workload from Cloud Functions for Firebase to CloudFlare workers, taking advantage of the lower cost and faster-performing edge computing of Cloudflare network. Made possible due to our extremely low CPU and RAM overhead of our serverless functions.

            If I were to summarize the limitation of Cloudflare (as oppose to firebase/gcp functions), it would be ...

            1. <5ms CPU time limit
            2. Incompatible with express.js
            3. one script limitation per domain

            Limitations our workload is able to conform with (YMMV)

            For hosting of static files, we migrated from Firebase to CommonsHost

            More details on the trade-off in between both serverless providers is in the article

            See more
            Aliadoc Team

            In #Aliadoc, we're exploring the crowdfunding option to get traction before launch. We are building a SaaS platform for website design customization.

            For the Admin UI and website editor we use React and we're currently transitioning from a Create React App setup to a custom one because our needs have become more specific. We use CloudFlare as much as possible, it's a great service.

            For routing dynamic resources and proxy tasks to feed websites to the editor we leverage CloudFlare Workers for improved responsiveness. We use Firebase for our hosting needs and user authentication while also using several Cloud Functions for Firebase to interact with other services along with Google App Engine and Google Cloud Storage, but also the Real Time Database is on the radar for collaborative website editing.

            We generally hate configuration but honestly because of the stage of our project we lack resources for doing heavy sysops work. So we are basically just relying on Serverless technologies as much as we can to do all server side processing.

            Visual Studio Code definitively makes programming a much easier and enjoyable task, we just love it. We combine it with Bitbucket for our source code control needs.

            See more