What is Envoy and what are its top alternatives?
Top Alternatives to Envoy
- Istio
Istio is an open platform for providing a uniform way to integrate microservices, manage traffic flow across microservices, enforce policies and aggregate telemetry data. Istio's control plane provides an abstraction layer over the underlying cluster management platform, such as Kubernetes, Mesos, etc. ...
- NGINX
nginx [engine x] is an HTTP and reverse proxy server, as well as a mail proxy server, written by Igor Sysoev. According to Netcraft nginx served or proxied 30.46% of the top million busiest sites in Jan 2018. ...
- linkerd
linkerd is an out-of-process network stack for microservices. It functions as a transparent RPC proxy, handling everything needed to make inter-service RPC safe and sane--including load-balancing, service discovery, instrumentation, and routing. ...
- Trailblazer
Trailblazer is a thin layer on top of Rails. It gently enforces encapsulation, an intuitive code structure and gives you an object-oriented architecture. In a nutshell: Trailblazer makes you write logicless models that purely act as data objects, don't contain callbacks, nested attributes, validations or domain logic. It removes bulky controllers and strong_parameters by supplying additional layers to hold that code and completely replaces helpers. ...
- HAProxy
HAProxy (High Availability Proxy) is a free, very fast and reliable solution offering high availability, load balancing, and proxying for TCP and HTTP-based applications. ...
- Traefik
A modern HTTP reverse proxy and load balancer that makes deploying microservices easy. Traefik integrates with your existing infrastructure components and configures itself automatically and dynamically. ...
- Consul
Consul is a tool for service discovery and configuration. Consul is distributed, highly available, and extremely scalable. ...
- Kubernetes
Kubernetes is an open source orchestration system for Docker containers. It handles scheduling onto nodes in a compute cluster and actively manages workloads to ensure that their state matches the users declared intentions. ...
Envoy alternatives & related posts
Istio
- Zero code for logging and monitoring14
- Service Mesh9
- Great flexibility8
- Resiliency5
- Powerful authorization mechanisms5
- Ingress controller5
- Easy integration with Kubernetes and Docker4
- Full Security4
- Performance16
related Istio posts
At my company, we are trying to move away from a monolith into microservices led architecture. We are now stuck with a problem to establish a communication mechanism between microservices. Since, we are planning to use service meshes and something like Dapr/Istio, we are not sure on how to split services between the two. Service meshes offer Traffic Routing or Splitting whereas, Dapr can offer state management and service-service invocation. At the same time both of them provide mLTS, Metrics, Resiliency and tracing. How to choose who should offer what?
As for the new support of service mesh pattern by Kong, I wonder how does it compare to Istio?
NGINX
- High-performance http server1.4K
- Performance893
- Easy to configure729
- Open source607
- Load balancer530
- Free288
- Scalability288
- Web server225
- Simplicity175
- Easy setup136
- Content caching30
- Web Accelerator21
- Capability15
- Fast14
- High-latency12
- Predictability12
- Reverse Proxy8
- The best of them7
- Supports http/27
- Great Community5
- Lots of Modules5
- Enterprise version5
- High perfomance proxy server4
- Reversy Proxy3
- Streaming media delivery3
- Streaming media3
- Embedded Lua scripting3
- GRPC-Web2
- Blash2
- Lightweight2
- Fast and easy to set up2
- Slim2
- saltstack2
- Virtual hosting1
- Narrow focus. Easy to configure. Fast1
- Along with Redis Cache its the Most superior1
- Ingress controller1
- Advanced features require subscription10
related NGINX posts
Recently I have been working on an open source stack to help people consolidate their personal health data in a single database so that AI and analytics apps can be run against it to find personalized treatments. We chose to go with a #containerized approach leveraging Docker #containers with a local development environment setup with Docker Compose and nginx for container routing. For the production environment we chose to pull code from GitHub and build/push images using Jenkins and using Kubernetes to deploy to Amazon EC2.
We also implemented a dashboard app to handle user authentication/authorization, as well as a custom SSO server that runs on Heroku which allows experts to easily visit more than one instance without having to login repeatedly. The #Backend was implemented using my favorite #Stack which consists of FeathersJS on top of Node.js and ExpressJS with PostgreSQL as the main database. The #Frontend was implemented using React, Redux.js, Semantic UI React and the FeathersJS client. Though testing was light on this project, we chose to use AVA as well as ESLint to keep the codebase clean and consistent.
Around the time of their Series A, Pinterest’s stack included Python and Django, with Tornado and Node.js as web servers. Memcached / Membase and Redis handled caching, with RabbitMQ handling queueing. Nginx, HAproxy and Varnish managed static-delivery and load-balancing, with persistent data storage handled by MySQL.
- CNCF Project3
- Service Mesh1
- Fast Integration1
- Pre-check permissions1
- Light Weight1
related linkerd posts
- Trailblazer allows creating sane, large apps in Rails5
- Separates business logic from framework3
- Sound Software Architecture principals2
- Improves maintainability2
- Makes Rails better1
- Hasn't been on Thoughtworks radar since 20141
related Trailblazer posts
- Load balancer130
- High performance102
- Very fast69
- Proxying for tcp and http58
- SSL termination55
- Open source31
- Reliable27
- Free20
- Well-Documented18
- Very popular12
- Runs health checks on backends7
- Suited for very high traffic web sites7
- Scalable6
- Ready to Docker5
- Powers many world's most visited sites4
- Simple3
- Work with NTLM2
- Ssl offloading2
- Available as a plugin for OPNsense1
- Becomes your single point of failure6
related HAProxy posts
Around the time of their Series A, Pinterest’s stack included Python and Django, with Tornado and Node.js as web servers. Memcached / Membase and Redis handled caching, with RabbitMQ handling queueing. Nginx, HAproxy and Varnish managed static-delivery and load-balancing, with persistent data storage handled by MySQL.
We're using Git through GitHub for public repositories and GitLab for our private repositories due to its easy to use features. Docker and Kubernetes are a must have for our highly scalable infrastructure complimented by HAProxy with Varnish in front of it. We are using a lot of npm and Visual Studio Code in our development sessions.
- Kubernetes integration20
- Watch service discovery updates18
- Letsencrypt support14
- Swarm integration13
- Several backends12
- Ready-to-use dashboard6
- Easy setup4
- Rancher integration4
- Mesos integration1
- Mantl integration1
- Not very performant (fast)7
- Complicated setup7
related Traefik posts
We switched to Traefik so we can use the REST API to dynamically configure subdomains and have the ability to redirect between multiple servers.
We still use nginx with a docker-compose to expose the traffic from our APIs and TCP microservices, but for managing routing to the internet Traefik does a much better job
The biggest win for naologic was the ability to set dynamic configurations without having to restart the server
We are looking to configure a load balancer with some admin UI. We are currently struggling to decide between NGINX, Traefik, HAProxy, and Envoy. We will use a load balancer in a containerized environment and the load balancer should flexible and easy to reload without changes in case containers are scaled up.
- Great service discovery infrastructure60
- Health checking35
- Distributed key-value store29
- Monitoring26
- High-availability23
- Web-UI12
- Token-based acls10
- Gossip clustering6
- Dns server5
- Not Java3
- Docker integration1
related Consul posts
As we've evolved or added additional infrastructure to our stack, we've biased towards managed services. Most new backing stores are Amazon RDS instances now. We do use self-managed PostgreSQL with TimescaleDB for time-series data—this is made HA with the use of Patroni and Consul.
We also use managed Amazon ElastiCache instances instead of spinning up Amazon EC2 instances to run Redis workloads, as well as shifting to Amazon Kinesis instead of Kafka.
Since the beginning, Cal Henderson has been the CTO of Slack. Earlier this year, he commented on a Quora question summarizing their current stack.
Apps- Web: a mix of JavaScript/ES6 and React.
- Desktop: And Electron to ship it as a desktop application.
- Android: a mix of Java and Kotlin.
- iOS: written in a mix of Objective C and Swift.
- The core application and the API written in PHP/Hack that runs on HHVM.
- The data is stored in MySQL using Vitess.
- Caching is done using Memcached and MCRouter.
- The search service takes help from SolrCloud, with various Java services.
- The messaging system uses WebSockets with many services in Java and Go.
- Load balancing is done using HAproxy with Consul for configuration.
- Most services talk to each other over gRPC,
- Some Thrift and JSON-over-HTTP
- Voice and video calling service was built in Elixir.
- Built using open source tools including Presto, Spark, Airflow, Hadoop and Kafka.
- For server configuration and management we use Terraform, Chef and Kubernetes.
- We use Prometheus for time series metrics and ELK for logging.
Kubernetes
- Leading docker container management solution164
- Simple and powerful128
- Open source106
- Backed by google76
- The right abstractions58
- Scale services25
- Replication controller20
- Permission managment11
- Supports autoscaling9
- Cheap8
- Simple8
- Self-healing6
- No cloud platform lock-in5
- Promotes modern/good infrascture practice5
- Open, powerful, stable5
- Reliable5
- Scalable4
- Quick cloud setup4
- Cloud Agnostic3
- Captain of Container Ship3
- A self healing environment with rich metadata3
- Runs on azure3
- Backed by Red Hat3
- Custom and extensibility3
- Sfg2
- Gke2
- Everything of CaaS2
- Golang2
- Easy setup2
- Expandable2
- Steep learning curve16
- Poor workflow for development15
- Orchestrates only infrastructure8
- High resource requirements for on-prem clusters4
- Too heavy for simple systems2
- Additional vendor lock-in (Docker)1
- More moving parts to secure1
- Additional Technology Overhead1
related Kubernetes posts
How Uber developed the open source, end-to-end distributed tracing Jaeger , now a CNCF project:
Distributed tracing is quickly becoming a must-have component in the tools that organizations use to monitor their complex, microservice-based architectures. At Uber, our open source distributed tracing system Jaeger saw large-scale internal adoption throughout 2016, integrated into hundreds of microservices and now recording thousands of traces every second.
Here is the story of how we got here, from investigating off-the-shelf solutions like Zipkin, to why we switched from pull to push architecture, and how distributed tracing will continue to evolve:
https://eng.uber.com/distributed-tracing/
(GitHub Pages : https://www.jaegertracing.io/, GitHub: https://github.com/jaegertracing/jaeger)
Bindings/Operator: Python Java Node.js Go C++ Kubernetes JavaScript OpenShift C# Apache Spark
Our first experience with .NET core was when we developed our OSS feature management platform - Tweek (https://github.com/soluto/tweek). We wanted to create a solution that is able to run anywhere (super important for OSS), has excellent performance characteristics and can fit in a multi-container architecture. We decided to implement our rule engine processor in F# , our main service was implemented in C# and other components were built using JavaScript / TypeScript and Go.
Visual Studio Code worked really well for us as well, it worked well with all our polyglot services and the .Net core integration had great cross-platform developer experience (to be fair, F# was a bit trickier) - actually, each of our team members used a different OS (Ubuntu, macos, windows). Our production deployment ran for a time on Docker Swarm until we've decided to adopt Kubernetes with almost seamless migration process.
After our positive experience of running .Net core workloads in containers and developing Tweek's .Net services on non-windows machines, C# had gained back some of its popularity (originally lost to Node.js), and other teams have been using it for developing microservices, k8s sidecars (like https://github.com/Soluto/airbag), cli tools, serverless functions and other projects...