Alternatives to CockroachDB logo

Alternatives to CockroachDB

MySQL, Oracle, Cassandra, MongoDB, and FoundationDB are the most popular alternatives and competitors to CockroachDB.
206
327
+ 1
0

What is CockroachDB and what are its top alternatives?

CockroachDB is distributed SQL database that can be deployed in serverless, dedicated, or on-prem. Elastic scale, multi-active availability for resilience, and low latency performance.
CockroachDB is a tool in the Databases category of a tech stack.

Top Alternatives to CockroachDB

  • MySQL
    MySQL

    The MySQL software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production systems as well as for embedding into mass-deployed software. ...

  • Oracle
    Oracle

    Oracle Database is an RDBMS. An RDBMS that implements object-oriented features such as user-defined types, inheritance, and polymorphism is called an object-relational database management system (ORDBMS). Oracle Database has extended the relational model to an object-relational model, making it possible to store complex business models in a relational database. ...

  • Cassandra
    Cassandra

    Partitioning means that Cassandra can distribute your data across multiple machines in an application-transparent matter. Cassandra will automatically repartition as machines are added and removed from the cluster. Row store means that like relational databases, Cassandra organizes data by rows and columns. The Cassandra Query Language (CQL) is a close relative of SQL. ...

  • MongoDB
    MongoDB

    MongoDB stores data in JSON-like documents that can vary in structure, offering a dynamic, flexible schema. MongoDB was also designed for high availability and scalability, with built-in replication and auto-sharding. ...

  • FoundationDB
    FoundationDB

    FoundationDB is a NoSQL database with a shared nothing architecture. Designed around a "core" ordered key-value database, additional features and data models are supplied in layers. The key-value database, as well as all layers, supports full, cross-key and cross-server ACID transactions. ...

  • MariaDB
    MariaDB

    Started by core members of the original MySQL team, MariaDB actively works with outside developers to deliver the most featureful, stable, and sanely licensed open SQL server in the industry. MariaDB is designed as a drop-in replacement of MySQL(R) with more features, new storage engines, fewer bugs, and better performance. ...

  • Citus
    Citus

    It's an extension to Postgres that distributes data and queries in a cluster of multiple machines. Its query engine parallelizes incoming SQL queries across these servers to enable human real-time (less than a second) responses on large datasets. ...

  • Apache Aurora
    Apache Aurora

    Apache Aurora is a service scheduler that runs on top of Mesos, enabling you to run long-running services that take advantage of Mesos' scalability, fault-tolerance, and resource isolation. ...

CockroachDB alternatives & related posts

MySQL logo

MySQL

123.6K
102.9K
3.7K
The world's most popular open source database
123.6K
102.9K
+ 1
3.7K
PROS OF MYSQL
  • 800
    Sql
  • 679
    Free
  • 562
    Easy
  • 528
    Widely used
  • 489
    Open source
  • 180
    High availability
  • 160
    Cross-platform support
  • 104
    Great community
  • 78
    Secure
  • 75
    Full-text indexing and searching
  • 25
    Fast, open, available
  • 16
    SSL support
  • 15
    Reliable
  • 14
    Robust
  • 8
    Enterprise Version
  • 7
    Easy to set up on all platforms
  • 2
    NoSQL access to JSON data type
  • 1
    Relational database
  • 1
    Easy, light, scalable
  • 1
    Sequel Pro (best SQL GUI)
  • 1
    Replica Support
CONS OF MYSQL
  • 16
    Owned by a company with their own agenda
  • 3
    Can't roll back schema changes

related MySQL posts

Tim Abbott

We've been using PostgreSQL since the very early days of Zulip, but we actually didn't use it from the beginning. Zulip started out as a MySQL project back in 2012, because we'd heard it was a good choice for a startup with a wide community. However, we found that even though we were using the Django ORM for most of our database access, we spent a lot of time fighting with MySQL. Issues ranged from bad collation defaults, to bad query plans which required a lot of manual query tweaks.

We ended up getting so frustrated that we tried out PostgresQL, and the results were fantastic. We didn't have to do any real customization (just some tuning settings for how big a server we had), and all of our most important queries were faster out of the box. As a result, we were able to delete a bunch of custom queries escaping the ORM that we'd written to make the MySQL query planner happy (because postgres just did the right thing automatically).

And then after that, we've just gotten a ton of value out of postgres. We use its excellent built-in full-text search, which has helped us avoid needing to bring in a tool like Elasticsearch, and we've really enjoyed features like its partial indexes, which saved us a lot of work adding unnecessary extra tables to get good performance for things like our "unread messages" and "starred messages" indexes.

I can't recommend it highly enough.

See more
Conor Myhrvold
Tech Brand Mgr, Office of CTO at Uber · | 23 upvotes · 2.3M views

Our most popular (& controversial!) article to date on the Uber Engineering blog in 3+ yrs. Why we moved from PostgreSQL to MySQL. In essence, it was due to a variety of limitations of Postgres at the time. Fun fact -- earlier in Uber's history we'd actually moved from MySQL to Postgres before switching back for good, & though we published the article in Summer 2016 we haven't looked back since:

The early architecture of Uber consisted of a monolithic backend application written in Python that used Postgres for data persistence. Since that time, the architecture of Uber has changed significantly, to a model of microservices and new data platforms. Specifically, in many of the cases where we previously used Postgres, we now use Schemaless, a novel database sharding layer built on top of MySQL (https://eng.uber.com/schemaless-part-one/). In this article, we’ll explore some of the drawbacks we found with Postgres and explain the decision to build Schemaless and other backend services on top of MySQL:

https://eng.uber.com/mysql-migration/

See more
Oracle logo

Oracle

2.6K
1.7K
113
An RDBMS that implements object-oriented features such as user-defined types, inheritance, and polymorphism
2.6K
1.7K
+ 1
113
PROS OF ORACLE
  • 44
    Reliable
  • 33
    Enterprise
  • 15
    High Availability
  • 5
    Expensive
  • 5
    Hard to maintain
  • 4
    Maintainable
  • 4
    Hard to use
  • 3
    High complexity
CONS OF ORACLE
  • 14
    Expensive

related Oracle posts

Hi. We are planning to develop web, desktop, and mobile app for procurement, logistics, and contracts. Procure to Pay and Source to pay, spend management, supplier management, catalog management. ( similar to SAP Ariba, gap.com, coupa.com, ivalua.com vroozi.com, procurify.com

We got stuck when deciding which technology stack is good for the future. We look forward to your kind guidance that will help us.

We want to integrate with multiple databases with seamless bidirectional integration. What APIs and middleware available are best to achieve this? SAP HANA, Oracle, MySQL, MongoDB...

ASP.NET / Node.js / Laravel. ......?

Please guide us

See more
Cassandra logo

Cassandra

3.6K
3.5K
507
A partitioned row store. Rows are organized into tables with a required primary key.
3.6K
3.5K
+ 1
507
PROS OF CASSANDRA
  • 119
    Distributed
  • 98
    High performance
  • 81
    High availability
  • 74
    Easy scalability
  • 53
    Replication
  • 26
    Reliable
  • 26
    Multi datacenter deployments
  • 10
    Schema optional
  • 9
    OLTP
  • 8
    Open source
  • 2
    Workload separation (via MDC)
  • 1
    Fast
CONS OF CASSANDRA
  • 3
    Reliability of replication
  • 1
    Size
  • 1
    Updates

related Cassandra posts

Thierry Schellenbach
Shared insights
on
RedisRedisCassandraCassandraRocksDBRocksDB
at

1.0 of Stream leveraged Cassandra for storing the feed. Cassandra is a common choice for building feeds. Instagram, for instance started, out with Redis but eventually switched to Cassandra to handle their rapid usage growth. Cassandra can handle write heavy workloads very efficiently.

Cassandra is a great tool that allows you to scale write capacity simply by adding more nodes, though it is also very complex. This complexity made it hard to diagnose performance fluctuations. Even though we had years of experience with running Cassandra, it still felt like a bit of a black box. When building Stream 2.0 we decided to go for a different approach and build Keevo. Keevo is our in-house key-value store built upon RocksDB, gRPC and Raft.

RocksDB is a highly performant embeddable database library developed and maintained by Facebook’s data engineering team. RocksDB started as a fork of Google’s LevelDB that introduced several performance improvements for SSD. Nowadays RocksDB is a project on its own and is under active development. It is written in C++ and it’s fast. Have a look at how this benchmark handles 7 million QPS. In terms of technology it’s much more simple than Cassandra.

This translates into reduced maintenance overhead, improved performance and, most importantly, more consistent performance. It’s interesting to note that LinkedIn also uses RocksDB for their feed.

#InMemoryDatabases #DataStores #Databases

See more
Umair Iftikhar
Technical Architect at ERP Studio · | 3 upvotes · 433.1K views

Developing a solution that collects Telemetry Data from different devices, nearly 1000 devices minimum and maximum 12000. Each device is sending 2 packets in 1 second. This is time-series data, and this data definition and different reports are saved on PostgreSQL. Like Building information, maintenance records, etc. I want to know about the best solution. This data is required for Math and ML to run different algorithms. Also, data is raw without definitions and information stored in PostgreSQL. Initially, I went with TimescaleDB due to PostgreSQL support, but to increase in sites, I started facing many issues with timescale DB in terms of flexibility of storing data.

My major requirement is also the replication of the database for reporting and different purposes. You may also suggest other options other than Druid and Cassandra. But an open source solution is appreciated.

See more
MongoDB logo

MongoDB

93K
78.7K
4.1K
The database for giant ideas
93K
78.7K
+ 1
4.1K
PROS OF MONGODB
  • 827
    Document-oriented storage
  • 593
    No sql
  • 553
    Ease of use
  • 464
    Fast
  • 410
    High performance
  • 257
    Free
  • 218
    Open source
  • 180
    Flexible
  • 145
    Replication & high availability
  • 112
    Easy to maintain
  • 42
    Querying
  • 39
    Easy scalability
  • 38
    Auto-sharding
  • 37
    High availability
  • 31
    Map/reduce
  • 27
    Document database
  • 25
    Easy setup
  • 25
    Full index support
  • 16
    Reliable
  • 15
    Fast in-place updates
  • 14
    Agile programming, flexible, fast
  • 12
    No database migrations
  • 8
    Easy integration with Node.Js
  • 8
    Enterprise
  • 6
    Enterprise Support
  • 5
    Great NoSQL DB
  • 4
    Support for many languages through different drivers
  • 3
    Drivers support is good
  • 3
    Aggregation Framework
  • 3
    Schemaless
  • 2
    Fast
  • 2
    Managed service
  • 2
    Easy to Scale
  • 2
    Awesome
  • 2
    Consistent
  • 1
    Good GUI
  • 1
    Acid Compliant
CONS OF MONGODB
  • 6
    Very slowly for connected models that require joins
  • 3
    Not acid compliant
  • 1
    Proprietary query language

related MongoDB posts

Jeyabalaji Subramanian

Recently we were looking at a few robust and cost-effective ways of replicating the data that resides in our production MongoDB to a PostgreSQL database for data warehousing and business intelligence.

We set ourselves the following criteria for the optimal tool that would do this job: - The data replication must be near real-time, yet it should NOT impact the production database - The data replication must be horizontally scalable (based on the load), asynchronous & crash-resilient

Based on the above criteria, we selected the following tools to perform the end to end data replication:

We chose MongoDB Stitch for picking up the changes in the source database. It is the serverless platform from MongoDB. One of the services offered by MongoDB Stitch is Stitch Triggers. Using stitch triggers, you can execute a serverless function (in Node.js) in real time in response to changes in the database. When there are a lot of database changes, Stitch automatically "feeds forward" these changes through an asynchronous queue.

We chose Amazon SQS as the pipe / message backbone for communicating the changes from MongoDB to our own replication service. Interestingly enough, MongoDB stitch offers integration with AWS services.

In the Node.js function, we wrote minimal functionality to communicate the database changes (insert / update / delete / replace) to Amazon SQS.

Next we wrote a minimal micro-service in Python to listen to the message events on SQS, pickup the data payload & mirror the DB changes on to the target Data warehouse. We implemented source data to target data translation by modelling target table structures through SQLAlchemy . We deployed this micro-service as AWS Lambda with Zappa. With Zappa, deploying your services as event-driven & horizontally scalable Lambda service is dumb-easy.

In the end, we got to implement a highly scalable near realtime Change Data Replication service that "works" and deployed to production in a matter of few days!

See more
Robert Zuber

We use MongoDB as our primary #datastore. Mongo's approach to replica sets enables some fantastic patterns for operations like maintenance, backups, and #ETL.

As we pull #microservices from our #monolith, we are taking the opportunity to build them with their own datastores using PostgreSQL. We also use Redis to cache data we’d never store permanently, and to rate-limit our requests to partners’ APIs (like GitHub).

When we’re dealing with large blobs of immutable data (logs, artifacts, and test results), we store them in Amazon S3. We handle any side-effects of S3’s eventual consistency model within our own code. This ensures that we deal with user requests correctly while writes are in process.

See more
FoundationDB logo

FoundationDB

32
79
21
Multi-model database with particularly strong fault tolerance, performance, and operational ease
32
79
+ 1
21
PROS OF FOUNDATIONDB
  • 6
    ACID transactions
  • 5
    Linear scalability
  • 3
    Multi-model database
  • 3
    Key-Value Store
  • 3
    Great Foundation
  • 1
    SQL Layer
CONS OF FOUNDATIONDB
    Be the first to leave a con

    related FoundationDB posts

    MariaDB logo

    MariaDB

    16K
    12.4K
    468
    An enhanced, drop-in replacement for MySQL
    16K
    12.4K
    + 1
    468
    PROS OF MARIADB
    • 149
      Drop-in mysql replacement
    • 100
      Great performance
    • 74
      Open source
    • 55
      Free
    • 44
      Easy setup
    • 15
      Easy and fast
    • 14
      Lead developer is "monty" widenius the founder of mysql
    • 6
      Also an aws rds service
    • 4
      Consistent and robust
    • 4
      Learning curve easy
    • 2
      Native JSON Support / Dynamic Columns
    • 1
      Real Multi Threaded queries on a table/db
    CONS OF MARIADB
      Be the first to leave a con

      related MariaDB posts

      Joshua Dean Küpper
      CEO at Scrayos UG (haftungsbeschränkt) · | 11 upvotes · 657.9K views

      We primarily use MariaDB but use PostgreSQL as a part of GitLab , Sentry and Nextcloud , which (initially) forced us to use it anyways. While this isn't much of a decision – because we didn't have one (ha ha) – we learned to love the perks and advantages of PostgreSQL anyways. PostgreSQL's extension system makes it even more flexible than a lot of the other SQL-based DBs (that only offer stored procedures) and the additional JOIN options, the enhanced role management and the different authentication options came in really handy, when doing manual maintenance on the databases.

      See more

      I'm researching what Technology Stack I should use to build my product (something like food delivery App) for Web, iOS, and Android Apps. Please advise which technologies you would recommend from a Scalability, Reliability, Cost, and Efficiency standpoint for a start-up. Here are the technologies I came up with, feel free to suggest any new technology even it's not in the list below.

      For Mobile Apps -

      1. native languages like Swift for IOS and Java/Kotlin for Android
      2. or cross-platform languages like React Native for both IOS and Android Apps

      For UI -

      1. React

      For Back-End or APIs -

      1. Node.js
      2. PHP

      For Database -

      1. PostgreSQL
      2. MySQL
      3. Cloud Firestore
      4. MariaDB

      Thanks!

      See more
      Citus logo

      Citus

      57
      121
      10
      Worry-free Postgres for SaaS
      57
      121
      + 1
      10
      PROS OF CITUS
      • 6
        Multi-core Parallel Processing
      • 2
        Drop-in PostgreSQL replacement
      • 2
        Distributed with Auto-Sharding
      CONS OF CITUS
        Be the first to leave a con

        related Citus posts

        Dan Robinson
        Shared insights
        on
        PostgreSQLPostgreSQLCitusCitus
        at

        PostgreSQL was an easy early decision for the founding team. The relational data model fit the types of analyses they would be doing: filtering, grouping, joining, etc., and it was the database they knew best.

        Shortly after adopting PG, they discovered Citus, which is a tool that makes it easy to distribute queries. Although it was a young project and a fork of Postgres at that point, Dan says the team was very available, highly expert, and it wouldn’t be very difficult to move back to PG if they needed to.

        The stuff they forked was in query execution. You could treat the worker nodes like regular PG instances. Citus also gave them a ton of flexibility to make queries fast, and again, they felt the data model was the best fit for their application.

        #DataStores #Databases

        See more
        Dan Robinson

        At Heap, we searched for an existing tool that would allow us to express the full range of analyses we needed, index the event definitions that made up the analyses, and was a mature, natively distributed system.

        After coming up empty on this search, we decided to compromise on the “maturity” requirement and build our own distributed system around Citus and sharded PostgreSQL. It was at this point that we also introduced Kafka as a queueing layer between the Node.js application servers and Postgres.

        If we could go back in time, we probably would have started using Kafka on day one. One of the biggest benefits in adopting Kafka has been the peace of mind that it brings. In an analytics infrastructure, it’s often possible to make data ingestion idempotent.

        In Heap’s case, that means that, if anything downstream from Kafka goes down, we won’t lose any data – it’s just going to take a bit longer to get to its destination. We also learned that you want the path between data hitting your servers and your initial persistence layer (in this case, Kafka) to be as short and simple as possible, since that is the surface area where a failure means you can lose customer data. We learned that it’s a very good fit for an analytics tool, since you can handle a huge number of incoming writes with relatively low latency. Kafka also gives you the ability to “replay” the data flow: it’s like a commit log for your whole infrastructure.

        #MessageQueue #Databases #FrameworksFullStack

        See more
        Apache Aurora logo

        Apache Aurora

        69
        96
        0
        An Apcahe Mesos framework for scheduling jobs, originally developed by Twitter
        69
        96
        + 1
        0
        PROS OF APACHE AURORA
          Be the first to leave a pro
          CONS OF APACHE AURORA
            Be the first to leave a con

            related Apache Aurora posts

            Docker containers on Mesos run their microservices with consistent configurations at scale, along with Aurora for long-running services and cron jobs.

            See more